• Title/Summary/Keyword: Steel pipe jacking

Search Result 6, Processing Time 0.02 seconds

In-Situ Application of the Steel Pipe jacking with Grouting (그라우팅을 병행한 강관추진공법의 현장 적용성 연구)

  • Jung, Min-Hyung;Lim, Ho-Jung;Shin, Chang-Sub;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.152-160
    • /
    • 2009
  • The pipe jacking method which is a non-excavation method is frequently used due to constructability and economical efficiency in a medium or small-sized pipeline construction. However, jacking process of the method still causes problems that the base ground is disturbed and loosen. These lead to surface settlement, strength decrease and leakage of water. Therefore, this study presents in-situ application of the steel pipe jacking with grouting, and it is that jacking and grouting are progressed simultaneously. To verify this, the steel pipe jacking with grouting and the existing steel pipe jacking have been constructed on the same ground condition. It has been proved that the steel pipe jacking with grouting is in-situ applicable according to results of monitoring surface settlement, in-situ density, GPR geophysical prospecting and large scale direct shear test.

In-Situ Application of Steel Pipe jacking with Grout In Pipe Method (GIP 강관추진공법의 현장 적용성 연구)

  • Lim, Ho-Jeong;Jung, Min-Hyung;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1290-1297
    • /
    • 2008
  • A pipe jacking method complements the excavation method and it is a non-excavation method which is thrust in the earth. On that score, using the pipe jacking method is increased because of constructability and economical efficiency in a medium or small-sized pipeline construction. However, a pipe jacking method still has several problems that the base ground is disturbed and loosen. Especially, where some sites have boulders, gravels and foreign bodies, the foundation is brought about deformation, settlement and leakage of water. Thus, the end of the construction the ground should be reinforced by grouting and it occur with additional expenses. Therefore, a steel pipe jacking method with grouting, Grout In Pipe, is devised newly to complement the existing method. In this study, it describes a new method and verifies efficiency, an application and practicality of the method through a experimental construction.

  • PDF

Comparison of earth pressure around pipe-roof between UPRS and front-jacking method (UPRS 공법과 프론트잭킹 공법의 파이프루프 주변 현장토압 계측결과 비교)

  • Sim, Youngjong;Jin, Kyu-Nam;Song, Ki-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.5
    • /
    • pp.513-522
    • /
    • 2015
  • This study is to confirm the effect of pre-installed pipe-roof by measuring earth pressure acting on the underpass. In recently developed trenchless methods pre-inserted steel pipes before ground excavation to form pipe-roof are connected each other with re-bars and filled with mortar. In this study, focusing on the Upgraded Pipe Roof Structure method (UPRS) and Front-Jacking, earth pressure around pipe-roof is measured after insertion of steel pipe to ensure the effect of earth pressure reduction. In case of the UPRS earth pressure is considerably reduced because of the reinforced effect of pipe-roof. In case of the Front-Jacking in which the whole underpass structure is pushed into the ground, earth pressure is not reduced as expected, because the pre-installed pipes are not needed to be reinforced.

A Study on Surface Settlement Prediction Method of Trenchless Technology Pipe Jacking Method (비개착 강관압입공법의 지표침하 예측방법 연구)

  • Chung, Jeeseung;Lee, Gyuyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.11
    • /
    • pp.29-37
    • /
    • 2015
  • Non-excavation method is needed to secure the stability of existing structures during construction. Therefore, prediction of ground settlement is essential. Causes of settlement when using steel pipe indentation method are leading pipe-steel pipe gap, excessive excavation and soil-steel pipe friction etc. Also they are similar to the causes of settlement when using Shield TBM during construction. In this study, ground settlement during steel pipe indentation is predicted by the Gap Parameter Method and Volume Loss Method which are kinds of Shield TBM prediction Method. and compared with those of prediction methods by conducting field test. As a result, Volume Loss Prediction Method is the most similar to the field tests. However, It is needed to additional studies, such as decision of the factors and adaptability for total settlement predictions of non-excavation method.

Effect of Pile Driving Energy on Steel Pipe Pile Capacity in Sands (모래지반에서 말뚝의 항타에너지가 강관말뚝의 지지력에 미치는 영향)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.99-110
    • /
    • 2001
  • Open-ended pipe piles are often used for the foundations of both land and offshore structures because of their relatively low driving resistance. In this study, load tests were performed on model pipe piles installed in calibration chamber samples in order to investigate the effects of pile installation method on soil plugging and bearing capacity. Results of the test program showed that the incremental filling ratio (IFR), which is used to indicate the degree of soil plugging in open-ended piles, decreased (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the same fall height. The base and shaft resistance of the piles were observed to increase (i) with increasing hammer weight for the same driving energy and (ii) with increasing hammer weight at the given same fa11 height. The jacked pile was found to be have higher bearing capacity than an identical driven pile under similar conditions, mostly due to the more effective development of a soil plug in jacking than in driving.

  • PDF

Investigation of Axially Loaded Jacked Pile Behavior by Pile Load Test (말뚝재하시험을 통한 압입강관말뚝의 연직지지거동 분석)

  • Baek, Sung-Ha;Do, Eun-Su;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.39-49
    • /
    • 2018
  • Jacked pile that involves the use of hydraulic jacks to press the piles into the ground is free from noise and vibration, and is possibly installed within a limited construction area. Thus, as an alternative to conventional pile driving methods, pile jacking could become widely accepted for the construction projects in urban area (e.g., reconstruction or remodeling construction projects). Great concern has arisen over the prediction of axially loaded jacked pile behavior. Against this background, a series of pile load tests were hence conducted on a jacked steel pipe pile installed in weathered zone (i.e., weathered soil and weathered rock). From the test results, base resistance and shaft resistance for each test condition were evaluated and compared with the values predicted by the previous driven pile resistance assessment method. Test results showed that the previous driven pile resistance assessment method highly underestimated both the base and shaft resistances of a jacked pile; differences were more obviously observed with the shaft resistance. The reason for this discrepancy is that a driven pile normally experiences a larger number of loading/unloading cycles during installation, and therefore shows significantly degraded stiffness of surrounding soil. Based on the results of the pile load tests, particular attention was given to the modification of the previous driven pile resistance assessment method for investigating the axially loaded jacked pile behavior.