• Title/Summary/Keyword: Steel corrosion

검색결과 2,693건 처리시간 0.03초

EVALUATION OF GALVANIC CORROSION BEHAVIOR OF SA-508 LOW ALLOY STEEL AND TYPE 309L STAINLESS STEEL CLADDING OF REACTOR PRESSURE VESSEL UNDER SIMULATED PRIMARY WATER ENVIRONMENT

  • Kim, Sung-Woo;Kim, Dong-Jin;Kim, Hong-Pyo
    • Nuclear Engineering and Technology
    • /
    • 제44권7호
    • /
    • pp.773-780
    • /
    • 2012
  • The article presented is concerned with an evaluation of the corrosion behavior of SA-508 low alloy steel (LAS) and Type 309L stainless steel (SS) cladding of a reactor pressure vessel under the simulated primary water chemistry of a pressurized water reactor (PWR). The uniform corrosion and galvanic corrosion rates of SA-508 LAS and Type 309L SS were measured in three different control conditions: power operation, shutdown, and power operation followed by shutdown. In all conditions, the dissimilar metal coupling of SA-508 LAS and Type 309L SS exhibited higher corrosion rates than the SA-508 base metal itself due to severe galvanic corrosion near the cladding interface, while the corrosion of Type 309L in the primary water environment was minimal. The galvanic corrosion rate of the SA-508 LAS and Type 309L SS couple measured under the simulated power operation condition was much lower than that measured in the simulated shutdown condition due to the formation of magnetite on the metal surface in a reducing environment. Based on the experimental results, the corrosion rate of SA-508 LAS clad with Type 309L SS was estimated as a function of operating cycle simulated for a typical PWR.

Effect of Niobium on Corrosion Fatigue Properties of High Strength Steel

  • Cho, Young-Joo;Cho, Sang-Won;Kim, Jung-Gu
    • Corrosion Science and Technology
    • /
    • 제17권2호
    • /
    • pp.81-89
    • /
    • 2018
  • In this study, the effect of Nb alloying element on the corrosion fatigue properties of high strength steel is investigated by conducting fatigue experiments under corrosive condition and hydrogen induced condition, potentiodynamic polarization test, tensile test and surface analyses. Nb element is added to enhance the mechanical property of medium carbon steel. This element forms MX-type phases such as carbides and nitrides which are playing an important role in the grain refinement. The grain refinement is one of the effective way to improve mechanical property because both tensile strength and toughness can be improved at the same time. However, MX-type phase precipitates can be a susceptible site to localized corrosion in corrosive environment due to the potential difference between matrix and precipitate. The obtained results showed that Nb-added steel improved corrosion fatigue property by grain refinement. However, it is degraded for hydrogen-induced fatigue property due to Nb, Ti-inclusions acting as a stronger trap.

산성비 분위기에서 교량용 강재 SWS400의 용접부 부식에 관한 연구 (A study of corrosion of welded bridge steel SWS400 in the acid-rain environment)

  • 정원석;김정구;이병훈
    • Journal of Welding and Joining
    • /
    • 제15권5호
    • /
    • pp.124-133
    • /
    • 1997
  • Corrosion behavior of welded SWS400 steel used for bridges was studied in a range of the acid-rain environment using immersion, potentiodynamic polartization, polarization resistance, and galvanic corrosion tests. The SWS400 steel exhibited active corrosion behavior in the range of acid-rain environment, i.e. no passivation. As the results of immersion corrosion test, Tafel extrapolation method, and polarization resistance measurement, the average corrosion rats of the steels were 0.31-0.72 mm/year in the pH of 4-5, and 0.17 mm/yera in the pH 6, respectively. The steel showed a resistance to corrosion in the pH 6. The observed active behavior of SWS400 steel in chloride-containing environment indicated that the chloride ions exerts a detrimental influence on the formation of passive films. Galvanic corrosion was observed between the weld and the base metals because the weld is anodic to the base metal.

  • PDF

Electrochemical Behavior and Corrosion Protection of Galvanized Steel Sheet Treated in Ce Based Solution

  • Song, Yon-Kyun;Mansfeld, F.
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.332-337
    • /
    • 2008
  • A reaction and evaporation types of cerium based conversion coatings were developed for galvanized steel sheet. The corrosion loss Q(Cb/cm2) and protection efficiency P(%) were obtained using a polarization technique for cerium based conversion coatings on galvanized steel exposed to 0.5N NaCl for 7 days. The microstructure of coating layer was observed using SEM. An excellent corrosion reistnce of galvanized steel was obtained by two types of cerium basd conversion coating. Salt spray test was done to evaluate the corrosion resistance of three samples by visual inspection. The corrosion ranking of three samples-untreated and two treatedby electrochemical data was matched well with the results of salt spray test.

The study on the influence of surface cleanness and water soluble salt on corrosion protection of epoxy resin coated carbon steel

  • Shon, MinYoung
    • Corrosion Science and Technology
    • /
    • 제13권5호
    • /
    • pp.163-169
    • /
    • 2014
  • The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting and power tool treatment as well as contamination of water soluble salt. To study the effect of the surface treatments and contamination, the topology of the treated surface was observed by confocal microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with immersion test of 3.5 wt% of NaCl solution. Consequently, the surface contamination by sodium chloride with $16mg/m^2$, $48mg/m^2$ and $96mg/m^2$ didn't affect the adhesion strength for current epoxy coated carbon steel and blister and rust were not observed on the surface of epoxy coating contaminated by various concentration of sodium chloride after 20 weeks of immersion in 3.5 wt% NaCl aqueous solutions. In addition, the results of EIS test showed that the epoxy-coated carbon steel treated with steel grit blasting and power tool showed similar corrosion protection performance and surface cleanness such as Sa 3 and Sa 2.5 didn't affect the corrosion protectiveness of epoxy coated carbon steel.

용융합금도금 강판 적용 노측용 방호울타리 충돌 안전성 평가 해석 사례 연구 (A Simulation Case Study on Impact Safety Assessment of Roadside Barriers Built with High Anti-corrosion Hot-dip Alloy-coated Steel)

  • 노명현
    • 한국안전학회지
    • /
    • 제31권2호
    • /
    • pp.83-89
    • /
    • 2016
  • As the world's industrial development quickens, the highways and regional expressways have been expanding to serve the logistics and transportation needs of people. The burgeoning road construction has led to a growing interest in roadside installations. These must have reliable performance over long periods, reduced maintenance and high durability. Steel roadside barriers are prone to corrosion and other compromises to their functionality. Therefore, using high anti-corrosion steel material is now seen as a viable solution to this problem. Thus, the objective of this paper is to expand the scope of applications for high anti-corrosion steel material for roadside barriers. This paper assesses the impact safety such as structural performance, occupant protection performance and post-impact vehicular response performance by a simulation review on roadside barriers built with high strength anti-corrosion steel materials named as hot-dip zinc-aluminium-magnesium alloy-coated steel. The simulation test results for the roadside barriers built with high strength anti-corrosion steels with reduced sectional thickness meet the safety evaluation criteria, hence the proposed roadside barrier made by high strength and high anti-corrosion hot-dip zinc-aluminium-magnesium alloy-coated steel will be a good solution to serve safe impact performance as well as save maintenance cost.

Numerical analysis of concrete degradation due to chloride-induced steel corrosion

  • Ayinde, Olawale O.;Zuo, Xiao-Bao;Yin, Guang-Ji
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.203-210
    • /
    • 2019
  • Concrete structures in marine environment are susceptible to chloride attack, where chloride diffusion results in the corrosion of steel bar and further lead to the cracking of concrete cover. This process causes structural deterioration and affects the response of concrete structures to different forms of loading. This paper presents the use of ABAQUS Finite Element Software in simulating the processes involved in concrete's structural degradation from chloride diffusion to steel corrosion and concrete cover cracking. Fick's law was used for the chloride diffusion, while the mass loss from steel corrosion was obtained using Faraday's law. Pressure generated by steel corrosion product at the concrete-steel interface was modeled by applying uniform radial displacements, while concrete smeared cracking alongside the Extended Finite Element Method (XFEM) was used for concrete cover cracking simulation. Results show that, chloride concentration decreases with penetration depth, but increases with exposure time at the concrete-steel interface. Cracks initiate and propagate in the concrete cover as pressure caused by the steel corrosion product increases. Furthermore, the crack width increases with the exposure time on the surface of the concrete.

Load-carrying capacity degradation of reinforced concrete piers due to corrosion of wrapped steel plates

  • Gao, Shengbin;Ikai, Toyoki;Ni, Jie;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.91-106
    • /
    • 2016
  • Two-dimensional elastoplastic finite element formulation is employed to investigate the load- carrying capacity degradation of reinforced concrete piers wrapped with steel plates due to occurrence of corrosion at the pier base. By comparing with experimental results, the employed finite element analysis method is verified to be accurate. After that, a series of parametric studies are conducted to investigate the effect of corrosion ratio and corrosion mode of steel plates located near the base of in-service pier P2 on load-carrying capacity of the piers. It is observed that the load-carrying capacity of the piers decreases with the increase in corrosion ratio of steel plates. There exists an obvious linear relationship between the load-carrying capacity and the corrosion ratio in the case of even corrosion mode. The degradation of load-carrying capacity resulted from the web's uneven corrosion mode is more serious than that under even corrosion mode, and the former case is more liable to occur than the latter case in actual engineering application. Finally, the failure modes of the piers under different corrosion state are discussed. It is found that the principal tensile strain of concrete and yield range of steel plates are distributed within a wide range in the case of slight corrosion, and they are concentrated on the column base when complete corrosion occurs. The findings obtained from the present study can provide a useful reference for the maintenance and strengthening of the in-service piers.

3.5% NaCl 수용액 내 TWIP강의 부식거동에 미치는 합금원소 (Cu, Al, Si)의 영향 (Effect of Alloying Elements (Cu, Al, Si) on the Electrochemical Corrosion Behaviors of TWIP Steel in a 3.5 % NaCl Solution)

  • 김시온;황중기;김성진
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.300-311
    • /
    • 2019
  • The corrosion behaviors of twinning-induced plasticity (TWIP) steels with different alloying elements (Cu, Al, Si) in a neutral aqueous environment were investigated in terms of the characteristics of the corrosion products formed on the steel surface. The corrosion behavior was evaluated by measuring potentiodynamic polarization test and electrochemical impedance spectroscopy. For compositional analysis of the corrosion products formed on the steel surface, an electron probe x-ray micro analyzer was also utilized. This study showed that the addition of Cu to the steel contributed to the increase in corrosion resistance to a certain extent by the presence of metallic Cu in discontinuous form at the oxide/steel interface. Compared to the case of steel with Cu, the Al-bearing specimen exhibited much higher polarization resistance and lower corrosion current by the formation of a thin Al-enriched oxide layer. On the other hand, Si addition (3.0 wt%) to the steel led to an increase in grain size, which was twice as large as that of the other specimens, resulting in a deterioration of the corrosion resistance. This was closely associated with the localized corrosion attacks along the grain boundaries by the formation of a galvanic couple with a large cathode-small anode.

무도장 내후성강의 장기 내식성 및 그 현장즉시측정법 (Long-term corrosion-resistance of an uncoated weathering steel and its on-line and in-situ measurements)

  • 박정렬;김규영
    • 한국강구조학회 논문집
    • /
    • 제16권4호통권71호
    • /
    • pp.415-423
    • /
    • 2004
  • 옥외 강구조물의 중요 소재인 무도장 내후성강의 장기 내식성을 평가하기 위해 우선 9년 이상 산업대기와 전원대기에 폭로된 본 강판 및 비교재 일반강판 시편의 천향면에 대해 중성의 인공우수에 침적시켜 전기화학적 부식전위, 임피던스 및 동전위 양분극 곡선으로 측정 및 그 결과를 고찰하였다. 산업대기 및 전원대기에 천향면으로 폭로된 내후성강 표면에는 부동태적인 안정화 녹층이 발달하였으며, 산업대기 폭로 표면의 인공우수에서의 부식속도는 $3{{\mu}m}/y$로 측정되어 우수한 내후내식 녹층으로 덮혀 있었다. 지속적으로 인공우수에 침적시키면 모든 시편 녹층은 점진적으로 열화되어 모재 철분의 양극산화용해 율속의 부식으로 진전됨을 나타내었다. 내후성 합금성분은 이런 부식의 진전을 지연시키고 있었다. 장기 내식성을 잘 평가하기 위해서는 9년보다 훨씬 장기간 대기폭로된 강재표면과 해당 대기 응축수 모사 수용액을 이용한 전기화학적 측정이 필요하다. 특히 본 측정방법들은 강재 표면의 원하는 부위와 폭로시간대에 거의 비파괴적으로 부식상황과 녹층의 상태와 정량적인 부식속도를 직접 바로 측정할 수 있게 하므로 강재를 사용한 교량, 탑, 건축물 등의 강구조물의 표면에 전기화학적 cell을 구성하고 이동측정기를 사용하면 강구조물의 내후 내식성을 현장즉시 측정 및 평가를 효과적으로 가능하게 할 수 있다.