• 제목/요약/키워드: Steel buckling restrained brace

검색결과 57건 처리시간 0.026초

Local and global buckling condition of all-steel buckling restrained braces

  • Mirtaheri, Seyed Masoud;Nazeryan, Meissam;Bahrani, Mohammad Kazem;Nooralizadeh, Amin;Montazerian, Leila;Naserifard, Mohamadhosein
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.217-228
    • /
    • 2017
  • Braces are one of the retrofitting systems of structure under earthquake loading. Buckling restrained braces (BRBs) are one of the very efficient braces for lateral loads. One of the key needs for a desirable and acceptable behavior of buckling-restraining brace members under intensive loading is that it prevents total buckling until the bracing member tolerates enough plastic deformation and ductility. This paper presents the results of a set of analysis by finite element method on buckling restrained braces in which the filler materials within the restraining member have been removed. These braces contain core as the conventional BRBs, but they have a different buckling restrained system. The purpose of this analysis is conducting a parametric study on various empty spaces between core and restraining member, the effect of friction between core and restraining member and applying initial deformation to brace system to investigate the global buckling behavior of these braces. The results of analysis indicate that the flexural stiffness of restraining member, regardless of the amount of empty space, can influence the global buckling behavior of brace significantly.

학교 건물 내진보강에서 철골가새 대비 비좌굴가새의 효율성 비교 연구 (Comparative Study of Effectiveness of Buckling-Restrained Braces Versus Steel Braces on Seismic Rehabilitation of School Buildings)

  • 이용근;김태완
    • 한국지진공학회논문집
    • /
    • 제28권6호
    • /
    • pp.325-334
    • /
    • 2024
  • Steel brace is a popular option among seismic rehabilitation methods for school buildings, but it has a weakness in that the section area must be large enough to prevent buckling, so stiffness and strength are highly increased locally, and foundation reinforcing is required. On the contrary, BRB has strength that the steel core may be negligible since buckling is restrained, so the increase of stiffness and strength is insignificant, and foundation reinforcing may not be required. This study compared the effectiveness of both reinforcing methods for the seismic performance of school buildings by conducting both pushover and nonlinear dynamic analyses. Steel brace and BRB reinforcing may not be satisfied by nonlinear dynamic analysis, even by pushover analysis. This result is due to the school buildings' low lateral resistance and high column shear strength ratio. Suppose BRB can be regarded as a general rehabilitation method. In that case, BRB reinforcing is a favorable and economical option for school buildings with low column shear strength ratio since it can better satisfy performance objectives than steel brace by pushover analysis with a small steel core and no foundation reinforcing.

강판으로 보강된 비좌굴가새의 성능에 대한 해석적 연구 (An Analytical Study on the Performance of Buckling Restrained Brace Reinforced with Steel Plate)

  • 김대홍;김혁수;유정한
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.51-57
    • /
    • 2022
  • In this paper, based on the finite element analysis model verified in previous studies, a new model of a buckling restrained brace reinforced with a steel plate was proposed. A design formula was proposed for the new model to dissipate energy without buckling the steel core under load protocol, and the performance of the model satisfying the design formula was evaluated by comparing it with the previous model through the results of hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping.

조립형 프리캐스트 콘크리트 보강재를 가지는 비좌굴가새의 이력특성 (Hysteresis Characteristics of Buckling Restrained Brace with Precast RC Restraining Elements)

  • 신승훈;오상훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.72-84
    • /
    • 2016
  • 종래 브레이스시스템은 횡력저항 및 층변위제어에 효율적이며 골조물량 감소에 따른 경제성이 향상되어 일반적인 강구조 횡력저항시스템으로 적용되고 있다. 그러나 압축측에서 항복응력에 도달하기 전 가새의 좌굴이 발생하여 충분한 내력을 발휘하지 못하고, 내력열화형의 이력거동으로 불안정상태가 된다. 좌굴에 의한 내력저하 개선시스템으로 중심재를 구속하여 좌굴방지가 가능한 비좌굴가새는 심재의 항복 이후에도 안정적인 이력특성을 나타내어 종래 브레이스에 비하여 에너지흡수능력이 우수하다. 최근 10년간 미국, 일본 및 대만에서 매우 다양한 형상의 비좌굴가새가 제안되었으나, 기존의 실험연구에서는 그 형상이 매우 제한적인 경향을 보이고 있다. 본 연구에서는 조립형 Precast RC 보강재를 가지는 비좌굴가새를 제작하고 이력특성을 평가하기 위한 부재실험을 수행하였다. 또한 실험결과를 AISC(2005)의 요구조항과 비교하였다.

Multi-material core as self-centering mechanism for buildings incorporating BRBs

  • Hoveidae, Nader
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.589-599
    • /
    • 2019
  • Conventional buckling restrained braces used in concentrically braced frames are expected to yield in both tension and compression without major degradation of capacity under severe seismic ground motions. One of the weakness points of a standard buckling restrained braced frame is the low post-yield stiffness and thus large residual deformation under moderate to severe ground motions. This phenomenon can be attributed to low post-yield stiffness of core member in a BRB. This paper introduces a multi-core buckling restrained brace. The multi-core term arises from the use of more than one core component with different steel materials, including high-performance steel (HPS-70W) and stainless steel (304L) with high strain hardening properties. Nonlinear dynamic time history analyses were conducted on variety of diagonally braced frames with different heights, in order to compare the seismic performance of regular and multi-core buckling restrained braced frames. The results exhibited that the proposed multi-core buckling restrained braces reduce inter-story and especially residual drift demands in BRBFs. In addition, the results of seismic fragility analysis designated that the probability of exceedance of residual drifts in multi-core buckling restrained braced frames is significantly lower in comparison to standard BRBFs.

Buckling-restrained brace with CFRP encasing: Mechanical behavior & cyclic response

  • Razavi, S. Ali;Kianmehr, Amirhossein;Hosseini, Abdollah;Mirghaderi, S. Rasoul
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.675-689
    • /
    • 2018
  • Buckling-restrained braces (BRBs) have received considerable attention in seismic design of various types of structures. Conventional BRBs are composed of steel core and surrounding steel tube filled with concrete. Eliminating the steel tube can be advantageous to BRB. In this study the idea of replacing the steel tube by CFRP layers in BRBs is proposed. The advantages of this type of BRB are mentioned, and its design criteria are introduced. The construction procedure of two BRB specimens is described. The specimens are uniaxially tested based on moderate, and severe earthquake levels and the performance of the specimens is investigated. The backbone curves resulted from the hysteresis curve are presented for the design proposes. The results of this study show that CFRP layers can effectively provide the expected performance of the encasing, and the proposed BRB can be considered a viable alternative to the conventional BRBs.

Hysteretic performance of the all-steel buckling-restrained brace with LY315 steel core

  • Wei, Xuan;Yang, Lu;Chen, Yohchia Frank;Wang, Meng
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.899-912
    • /
    • 2022
  • To study the seismic performance of the all-steel buckling-restrained brace (BRB) using the novel soft steel LY315 for core member, a total of three identical BRBs were designed and a series of experimental and numerical studies were conducted. First, monotonic and cyclic loading tests were carried out to obtain the mechanical properties of LY315 steel. In addition, the parameters of the Chaboche model were calibrated based on the test results and then verified using ABAQUS. Second, three BRB specimens were tested under cyclic loads to investigate the seismic performance. The failure modes of all the specimens were identified and discussed. The test results indicate that the BRBs exhibit excellent energy dissipation capacity, good ductility, and excellent low-cycle fatigue performance. Then, a finite element (FE) model was established and verified with the test results. Furthermore, a parametric study was performed to further investigate the effects of gap size, restraining ratio, slenderness ratio of the yielding segment, and material properties of the core member on the load capacity and energy dissipation capacity of BRBs.

횡좌굴 방지방식에 따른 비좌굴가새의 이력특성 분석 (Analysis of Hysteresis Characteristics of Buckling Restrained Brace According to Lateral buckling prevention Method)

  • 김유성;이준호;김기철
    • 한국공간구조학회논문집
    • /
    • 제23권1호
    • /
    • pp.61-68
    • /
    • 2023
  • Buckling Restrained Braces can not only express the strength considered at the time of design, but also reduce the seismic load by energy dissipation according to the plastic behavior after yield deformation of the steel core. The physical characteristics and damping effect may be different according to the buckling prevention method of the steel core by the lateral restraint element. Accordingly, in this study, To compare hysteresis characteristics, Specimen(BRB-C) filled with mortar, specimen(BRB-R) combined with a buckling restraint ring and Specimen(BRB-EP) filled with engineering plastics was fabricated, and a cyclic loading test was performed. As a result of the cyclic loading test, the maximum compressive strength, cumulative energy dissipation and ductility of each test specimen was similar. But in case of the cumulative energy dissipation and ductility, BRB-C filled with the mortar specimen showed the lowest. This is considered to be because the gap between the steel core and the reinforcing material for plastic deformation was not uniformly formed by pouring mortar around the core part.

Prequalification of a set of buckling restrained braces: Part II - numerical simulations

  • Zub, Ciprian Ionut;Stratan, Aurel;Dubina, Dan
    • Steel and Composite Structures
    • /
    • 제34권4호
    • /
    • pp.561-580
    • /
    • 2020
  • Buckling restrained braces (BRBs) were developed as an enhanced alternative to conventional braces by restraining their global buckling, thus allowing development of a stable quasi-symmetric hysteretic response. A wider adoption of buckling restrained braced frames is precluded due to proprietary character of most BRBs and the code requirement for experimental qualification. To overcome these problems, BRBs with capacities corresponding to typical steel multi-storey buildings in Romania were developed and experimentally tested in view of prequalification. In the second part of this paper, a complex nonlinear numerical model for the tested BRBs was developed in the finite element environment Abaqus. The calibration of the numerical model was performed at both component (material models: steel, concrete, unbonding material) and member levels (loading, geometrical imperfections). Geometrically and materially nonlinear analyses including imperfections were performed on buckling restrained braces models under cyclic loading. The calibrated models were further used to perform a parametric study aiming at assessing the influence of the strength of the buckling restraining mechanism, concrete class of the infill material, mechanical properties of steel used for the core, self-weight loading, and frame effect on the cyclic response of buckling restrained braces.

Fragility assessment of buckling-restrained braced frames under near-field earthquakes

  • Ghowsi, Ahmad F.;Sahoo, Dipti R.
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.173-190
    • /
    • 2015
  • This study presents an analytical investigation on the seismic response of a medium-rise buckling-restrained braced frame (BRBF) under the near-fault ground motions. A seven-story BRBF is designed as per the current code provisions for five different combinations of brace configurations and beam-column connections. Two types of brace configurations (i.e., Chevron and Double-X) are considered along with a combination of the moment-resisting and the non-moment-resisting beam-to-column connections for the study frame. Nonlinear dynamic analyses are carried out for all study frames for an ensemble of forty SAC near-fault ground motions. The main parameters evaluated are the interstory and residual drift response, brace displacement ductility, and plastic hinge mechanisms. Fragility curves are developed using log-normal probability density functions for all study frames considering the interstory drift ratio and residual drift ratio as the damage parameters. The average interstory drift response of BRBFs with Double-X brace configurations significantly exceeded the allowable drift limit of 2%. The maximum displacement ductility characteristics of BRBs is efficiently utilized under the seismic loading if these braces are arranged in the Double-X configurations instead of Chevron configurations in BRBFs located in the near-fault regions. However, BRBFs with the Double-X brace configurations exhibit the higher interstory drift and residual drift response under near-fault ground motions due to the formation of plastic hinges in the columns and beams at the intermediate story levels.