• Title/Summary/Keyword: Steel Works

Search Result 424, Processing Time 0.026 seconds

A Study on Hardening Characteristics of Carbon Steel by Using Finite Element Method (유한요소법을 이용한 탄소강의 경화특성에 관한 연구)

  • Hwang, Hyun-Tae;So, Sang-Woo;Kim, Jong-Do
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.4
    • /
    • pp.203-208
    • /
    • 2011
  • Recently, from general machine parts and automobile parts using carbon steel to a mold, there has been efforts for improving durability and attrition resistance of these parts. Especially, heat treatment with laser which works fast and automatically can be used for the mass production with high quality. Moreover, local heat treatment can be used to handle with complex and precise parts. Accordingly, we analyzed hardening characteristics of carbon steel using the finite element method and compare the experimental results to have more reliability. We also proved the cause of thermal deformation with temperature and stress distribution by heat treatment. After these analysis and experimental, we found that each maximum hardness of the two tests was 728 Hv and 700 Hv, on condition of $1050^{\circ}C$ heating temperature, and 2 mm/sec laser speed. We also found that difference of surface stress-distribution was occurred, and this makes deformation mode up after heat treatment.

A Study on Optimum Section of New Type Steel-Concrete Composite Beam (신형상 층고절감형 합성보의 최적단면 도출에 관한 연구)

  • Yoon, Myung-Ho;Lee, Yoon-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.30-35
    • /
    • 2011
  • This study investigates the optimum section properties of newly developed steel-concrete composite beam. For that purpose we developed computer program calculating section properties. The suggested new beam section highly contribute to save inter-story height and reduce construction duration and cost compared with conventional steel works such as H-beam and column + RC slab system. But the section shape have different section modulus with upper and lower fiber because of the unsymmetric cross section. Therefore the parametric study on thickness-ratio of top and bottom flange plate is needed. In this paper the change of neutral axis and section modulus for thickness-ratio of up and down flage plate is analysed and discussed.

Using integrated displacement method to time-history analysis of steel frames with nonlinear flexible connections

  • Hadianfard, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.5
    • /
    • pp.675-689
    • /
    • 2012
  • Most connections of steel structures exhibit flexible behaviour under cyclic loading. The flexible connections can be assumed as nonlinear rotational springs attached to the ends of each beam. The nonlinear behaviour of the connections can be considered by suitable moment-rotation relationship. Time-history analysis by direct integration method can be used as a powerful technique to determine the nonlinear dynamic response of the structure. In conventional numerical integration, the response is evaluated for a series of short time increments. The limitations on the size of time intervals can be removed by using Chen and Robinson improved time history analysis method, in which the integrated displacements are used as the new variables in integrated equation of motion. The proposed method permits longer time intervals and reduces the computational works. In this paper the nonlinearity behaviour of the structure is summarized on the connections, and the step by step improved time-history analysis is used to calculate the dynamic response of the structure. Several numerical calculations which indicate the applicability and advantages of the proposed methodology are presented. These calculations illustrate the importance of the effect of the nonlinear behaviour of the flexible connections in the calculation of the dynamic response of steel frames.

An Efficient Lot Grouping Algorithm for Steel Making in Mini Mill (철강 Mini Mill 에서의 효율적인 작업 단위 편성)

  • Park, Hyung-Woo;Hong, Yu-Shin;Chang, Soo-Young;Hwang, Sam-Sung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.649-660
    • /
    • 1998
  • Steel making in Mini Mill consists of three major processing stages: molten steel making in an electric arc fuenace, slab casting in a continuous caster, and hot rolling in a finishing mill. Each processing stage has its own lot grouping criterion. However, these criteria in three stages are conflicting with each other. Therefore, delveloping on efficient lot grouping algorithm to enhance the overall productivity of the Mini Mill is an extremely difficult task. The algorithm proposed in this paper is divided into three steps hierarchically: change grouping, cast grouping, and roll grouping. An efficient charge grouping heuristic is developed by exploiting the characteristics of the orders, the processing constraints and the requirements for the downstream stages. In order to maximaize the productivity of the continuous casters, each cast must contain as many charges as possible. Based on the constraint satisfaction problem technique, an efficient cast grouping heuristic is developed. Each roll consists of two casts satisfying the constraints for rolling. The roll grouping problem is formulated as a weighted non-bipartite matching problem, and an optimal roll grouping algorithm is developed. The proposed algorithm is programmed with C language and tested on a SUN Workstation with real data obtained from the H steel works. Through the computational experiment, the algorithm is verified to yield quite satisfactory solutions within a few minutes.

  • PDF

Effects of High-Strength Concrete Shear Walls with Rectangular Steel Tubes (고강도 콘크리트 전단벽체에 사용된 각형강관의 효과)

  • Kim, Myung-Jun;Oh, Jong-Han;Cho, Soon-Ho;Choi, Ki-Bong;Cho, Chul-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.209-217
    • /
    • 1998
  • Compared to normal-strength concrete, high-strength concrete has the lower lateral expansion capacity caused by the higher elastic modulus and the lower internal crack characteristic. Therefore, the effect of the lateral confining action of hoops appears slowly. Nevertheless, it has been reported that the strength and deformation capacity of high-strength concrete is improved by well-distributed hoops. Due to that argument, this investigation has been compared and analyzed by the experimental works on the deformation capacity and the confinement mechanism of high-strength concrete shear wall of the high-rise building reinforced by rectangular steel tubes and rectangular hoops at both edges. It is suggested that, using high-strength concrete($500kgf/cm^2$, $700kgf/cm^2$), hoops should be replaced with rectangular steel tubes in order to prevent closely spaced hoops at the edge of the shear wall.

  • PDF

A Review of Kinetic Model for Production of Highgrade Steel : Part. 1. Simulation Model Based on Coupled Reaction (고급강 제조 반응 모델의 검토 : Part. 1. Coupled Reaction 기반 시뮬레이션 모델)

  • Kim, Jeong-In;Kim, Sun-Joong
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.3-13
    • /
    • 2021
  • In the secondary refining process for the production of high-grade steel, the proper composition is maintained by alloying elements, and non-metallic inclusions are controlled for high cleanliness. Complex reactions occur simultaneously between the molten steel, slag, inclusions, refractories, and alloying elements during the secondary refining process. Previous works have reported simulation models based on kinetics to predict the compositional changes in molten steel, slag, and inclusions in actual processes. Analytical reviews are required for the models to predict the process accurately. In this study, we reviewed and analyzed simulation models based on the coupled reaction model for the secondary refining process.

Collapse of steel cantilever roof of tribune induced by snow loads

  • Altunisik, Ahmet C.;Ates, Sevket;Husem, Metin;Genc, Ali F.
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.273-283
    • /
    • 2017
  • In this paper, it is aimed to present a detail investigation related to structural behavior of laterally unrestrained steel cantilever roof of tribune with slender cross section. The structure is located in Tutak town in $A{\breve{g}}r{{\i}}$ and collapsed on October 25, 2015 at eastern part of Turkey is considered as a case study. This mild sloped roof structure was built from a variable I beam, and supported on steel columns of 5.5 m height covering totally $240m^2$ closed area in plan. The roof of tribune collapsed completely without any indication during first snowfall after construction at midnight a winter day, fortunately before the opening hours. The meteorological records and observations of local persons are combined together to estimate the intensity of snow load in the region and it is compared with the code specified values. Also, the wide/thickness and height/thickness ratios for flange and web are evaluated according to the design codes. Three dimensional finite element model of the existing steel tribune roof is generated considering project drawings and site investigations using commercially available software ANSYS. The displacements, principal stresses and strains along to the cantilever length and column height are given as contour diagrams and graph format. In addition to site investigation, the numerical and analytical works conducted in this study indicate that the unequivocal reasons of the collapse are overloading action of snow load intensity, some mistakes made in the design of steel cantilever beams, insufficient strength and rigidity of the main structural elements, and construction workmanship errors.

Protective Ability Index of Rust Layer Formed on Weathering Steel Bridge

  • Hara, S.;Kamimura, T.;Miyuki, H.;Yamashita, M.;Uchida, H.
    • Corrosion Science and Technology
    • /
    • v.6 no.3
    • /
    • pp.128-132
    • /
    • 2007
  • For a quantitative inspection on the performance of weathering steel bridges, we have investigated the relationship between the corrosion rate and the composition of the rust layers formed on weathering steel bridges located in various environments in Japan and applied a protective ability index (PAI) to the bridges. The corrosion rates were clearly classified by the PAI, ${\alpha}/{\gamma}*$ and sub index of $({\beta}+s)/{\gamma}*$, where $\alpha$, \gamma*, $\beta$ and s are the mass ratio of crystalline $\alpha-FeOOH$, the total of $\gamma$-FeOOH+ $\beta$-FeOOH + the spinel-type iron oxide (mainly $Fe_3O_4$), $\beta-FeOOH$ and spinel-type iron oxide, analyzed by powder X-ray diffraction, respectively. In the case of ${\alpha}/{\gamma}$*>1, the rust layer works protective enough to reduce the corrosion rate less than 0.01 mm/y. The sub index $({\beta}+s)/{\gamma}*$<0.5 or >0.5 classifies the corrosion rate of the non-protective rust layers, therefore the former state of the rust layer terms inactive and the latter terms active. The quantitative inspection of a weathering steel bridge requires a performance-inspection (PI) and periodical deteriorationinspections (DI). The PI can be completed by checking of the PAI, ${\alpha}/{\gamma}*$. The DI on the weathering steel bridges where deicing salt is sprinkled can be performed by checking the PAI, $({\beta}+s)/{\gamma}*$.

The Priority Analysis of the Risk and Countermeasures for Quality Control in the Steel Structure (강구조물 공사의 품질관리를 위한 리스크 중요도 분석 및 대응방안)

  • Cho, Hang-Min;Song, Young-Woong;Ahn, Jae-Bong;Choi, Yoon-Ki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.3
    • /
    • pp.87-96
    • /
    • 2007
  • Recently construction environment is being professionalized. oversized and diversified. Due to fluctuation of construction environment, the demand for the project of steel structure is ieased gradually and steel construction is needed the efficient quality management. The construction of steel structure which required a variety of sub-contractors, the progress of works and technologies are comprehensive of various risks and uncertain factors. But currently the construction of steel structure is conducted the risk management by perception and experience of constructors. Therefore, the analyzing factors of the risk and establishing the device are able to manage the quality management efficiently. In this study, we have conducted the interview of experts, polls and through the Analysis Hierarchy Process (AHP) for the scientific and systematic risk management. This paper will propose a plan for systematization of the construction of the steel structure.

Effect of unequal spans on the collapse behavior of multi-story frames with reduced beam section connections

  • Zheng Tan;Wei-hui Zhong;Bao Meng;Li-min Tian;Yao Gao;Yu-hui Zheng;Hong-Chen Wang
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.107-122
    • /
    • 2024
  • Following an internal column failure, adjacent double-span beams above the failed column will play a critical role in the load transfer and internal force redistribution within the remaining structure, and the span-to-depth ratios of double-span beams significantly influence the structural resistance capacity against progressive collapse. Most existing studies have focused on the collapse-resistant performances of single-story symmetric structures, whereas limited published works are available on the collapse resistances of multi-story steel frames with unequal spans. To this end, in this study, numerical models based on shell elements were employed to investigate the structural behavior of multi-story steel frames with unequal spans. The simulation models were validated using the previous experimental results obtained for single- and two-story steel frames, and the load-displacement responses and internal force development of unequal-span three-story steel frames under three cases were comprehensively analyzed. In addition, the specific contributions of the different mechanism resistances of unequal-span, double-span beams of each story were separated quantitatively using the energy equilibrium theory, with an aim to gain a deeper level of understanding of the load-resistance mechanisms in the unequal-span steel frames. The results showed that the axial and flexural mechanism resistances were determined by the span ratio and linear stiffness ratio of double-span beams, respectively.