• Title/Summary/Keyword: Steel Mill

Search Result 283, Processing Time 0.034 seconds

High speed machining of cavity pattern in prehardened mold using the small size tool (소경 공구를 이용한 고경도 패턴 금형의 고속 가공)

  • Im, Pyo;Jang, Dong-Kyu;Lee, Hee-Kwan;Yang, Kyun-Eui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.133-139
    • /
    • 2004
  • High speed machining (HSM) can reduce machining time with the high metal removal rate by high speed spindle and feedrate. This paper supports HSM technology using the small size tool with the optimal tool path generation and modification of tool change. The optimum tool path is generated to reduce cutting length of cavity pattern and change the cutting tool for preventing the tool breakage by wear. The tool path is modified with the experiment data of tool wear and breakage to support tool change on reasonable time. The result can contribute to HSM technology of high hardness materials using the small size end-mill.

A study on the stability criterion of the control systems for the drive systems in rolling mill plants (압연구동제어계(壓延驅動制御系)의 안정도(安定度) 판정법(判定法)에 관한 연구)

  • Jeong, H.S.;Baek, K.N.;Kang, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.380-382
    • /
    • 1989
  • It is necessary for us to maintain good the quality of products in iron and steel making process, especially in the rolling mill plants. Thus, we need check the stability criteria of control systems. In the frequency domain, the whole system including controllers can be identified using FFT analyzer. But this method is not adequete where precise identification is demanded. Thus a way to complement the defects In the frequency domain analysis using FFT analyzer is introduced. And In the time domain, to establish the stability criteria on the control systems, the assumed parameters obtained using least square method are presented in this report.

  • PDF

An Investigation into the PID Control for the Electro- Hydraulic Servo System of Skin Pass Mill

  • Lee, Jae-Cheon;Kim, Seong-Jin
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.4
    • /
    • pp.47-53
    • /
    • 2001
  • This study is to investigate the problem of the SPM(Skin Pass Mil7) system which is a finishing treatment of steel sheet. and to develop a PID control scheme to minimize process instability. An electrohydraulic servo system with conventional proportional controller used to regulate the force on the strip works inadequately to yield very undesirable transient responses at the moments welding parts of the strip conte into and pass through the rolls. Both linearized and nonlinear models of a typical SPM system ware simulated first by using Simulink. Then Ziegler-Nichols ultimate cycling method was used for an initial reference guide to tune PID gains, and further fine tuning was performed to get desirable response. The test result in the plant show that proposed PID control scheme successfully improves the process instability in a SPM system.

  • PDF

Mathematical Model of Rolling Force Estimation in Strip Cold Mill (박판 냉간압연공정에 있어서의 압연하중 예측모델에 관한 연구)

  • Baek, Nam-Joo;Kim, Jin-Wook;Park, Hae-Doo;Cho, Yong-Yee;Kim, Hee-Song
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.140-148
    • /
    • 1990
  • A mathemetical medel has been developed for the purpose of estimating the rolling force required for computer control of cold strip mills. The model consists of equations of rolling force. flow stress. friction coefficient and tension. By applying the model to a 6-High cold tandem mill, the computer simulation is then been possible for all kinds of steels except stainless steel and the effectiveness of the model has been confirmed in the practice.

  • PDF

Mechanical Properties of High Strength Hot Strips For Line Pipe Application (라인파이프용 고강도 열연강판의 기계적 성질)

  • 김문수;김준성;강기봉;노광섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.383-389
    • /
    • 1999
  • The purpose of this study was to investigate the effects of alloying and rolling condition on the mechanical properties and to develop high strength line pipe steels with good toughness. Tests were carried out by the laboratory experiments followed by mill trials and mass production. It was found that a small addition of microalloying elements, such as Nb, V with Mo or Ti remarkably increased the strength and toughness of hot strips. The optimum condition of thermomechanical rolling on low carbon microalloyed steel improved the toughness through the formation of a fine and uniform microstructure. Based on this mill trials following the fundamental research, the production technology of line pipe steels, grade X70∼X100 with high toughness, has been established. These grade steels exhibit excellent low temperature toughness (vTs= under -80$^{\circ}C$) and sufficient strength in both the base metal and the ERW seam weld position, respectively.

  • PDF

Rolling Force Prediction in Cold rolling Mill using Neural Networks (신경망을 이용한 냉연 압하력 예측)

  • Cho, Yong-Jung;Cho, Sung-Zoon
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.298-305
    • /
    • 1996
  • Cold rolling mill process in steel works uses stands of rolls to flatten a strip to a desired thickness. Most of rolling processes use mathematical models to predict rolling force which is very important to decide the resultant thickness of a coil. In general, these mathematical models are not flexible for variant coil types and cannot handle various elements which is practically important to decide accurate rolling force. A corrective neural network is proposed to improve the accuracy of rolling force prediction. Additional variables-composition of the coil, coiling temperature and working roll parameters-are fed to the network. The model uses an MLP with BP to predict a corrective coefficient. The test results using 1,586 process data collected at POSCO in early 1995 show that the proposed model reduced the prediction error by 30% on average.

  • PDF

Improvement of Thickness Accuracy in Hot-Rolling Mill Using Neural Network and Genetic Algorithm (신경회로망과 유전자 알고리즘을 이용한 열연두께 정도 향상)

  • 손준식;김일수;최승갑;이덕만
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.41-46
    • /
    • 2002
  • In the face of global competition, the requirements fer the continuously increasing productivity, flexibility and quality (dimensional accuracy, mechanical properties and surface properties) have imposed a major change on steel manufacturing industries. The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved. To achieve this objectives, a new loaming method with neural network to improve the accuracy of rolling force prediction in hot rolling mill is developed. Also, Genetic Algorithm(GA) is applied to select the optimal structure of the neural network and compared with that of engineers experience. It is shown from this research that both structure selection methods can lead to similar results.

  • PDF

Tool Alignment and Machining Accuracy in Micro End Milling (마이크로 머시닝에서의 공구 정렬과 가공정밀도)

  • An, Ju Eun;Lee, Sung Ho;Kwak, Jae Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • A micro end mill is one of the precise tools used in machining ultra-precision products such as microchannel and micropatterned mold. To achieve the required precision of these products, several studies investigated the cutting force, burr formation, and burr generation mechanism of micro end mills; however, there are few studies on the alignment of micro tools, which is the foundation of machining. Hence, in this investigation, relation expressions were derived to determine the relation between the misalignment parameters and the machining accuracy. At the same time, the effect of the machining parameters was analyzed using a multiple linear regression analysis and the analysis of variance. The results indicate that the tilting angle of a micro tool has more influence on the machining accuracy than other parameters.

Analysis of Rolling Contact Surface on PM-High Speed Steel by X-ray Diffraction (구름접촉을 하는 분말고속도공구강의 X선을 이용한 표면성상해석)

  • 이한영;김용진;배종수
    • Tribology and Lubricants
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Recently, PM-high speed steel(PM-HSS) has reportedly been a good alternative material for rolling mill because of its superior performance to conventional HSS. This paper has been aimed to investigate the possibility for application to rolling contact element for PM-HSS by X-ray diffraction technique. The X-ray elastic constant for PH-HSS has been found by X-ray diffraction during the four-point bending test. Residual stress and half-value breadth on the contact surface during rolling contact fatigue process by X-ray diffraction have also been measured. The result of this study shows that the application of X-ray diffraction technique to PM-HSS could be as possible alternative material as conventional HSS. Half-value breadth on rolling contact surface by X-ray diffraction is not changed during rolling contact fatigue process. On the other hand, the residual stress is changed. This suggests that dislocation reaction has been hardly occurred in rolling contact, depending on super-saturated carbon in PM-HSS.

Mathematical Model for Cold Rolling and Temper Rolling Process of Thin Steel Strip

  • Lee, Won-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1296-1302
    • /
    • 2002
  • A mathematical model for cold rolling and temper rolling process of thin steel strip has been developed using the influence function method. By solving the equations describing roll gap phenomena in a unique procedure and considering more influence factors, the model offers significant improvements in accuracy, robustness and generality of the solution for the thin strip cold and temper rolling conditions. The relationship between the shape of the roll profile and the roll force is also discussed. Calculation results show that any change increasing the roll force may result in or enlarge the central flat region in the deformation zone. Applied to the temper rolling process, the model can well predict not only the rolling load but also the large forward slip. Therefore, the measured forward slip, together with the measured roll force, was used to calibrate the model. The model was installed in tile setup computer of a temper rolling mill to make parallel setup calculations. The calculation results show good agreement with the measured data and the validity and precision of the model are proven.