• Title/Summary/Keyword: Steel Making

Search Result 561, Processing Time 0.025 seconds

Seismic Fragility of Steel Piping System Based on Pipe Size, Coupling Type, and Wall Thickness

  • Ju, Bu Seog;Gupta, Abhinav;Ryu, Yonghee
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1200-1209
    • /
    • 2018
  • In this study, a probabilistic framework of the damage assessment of pipelines subjected to extreme hazard scenario was developed to mitigate the risk and enhance design reliability. Nonlinear 3D finite element models of T-joint systems were developed based on experimental tests with respect to leakage detection of black iron piping systems, and a damage assessment analysis of the vulnerability of their components according to nominal pipe size, coupling type, and wall thickness under seismic wave propagations was performed. The analysis results showed the 2-inch schedule 40 threaded T-joint system to be more fragile than the others with respect to the nominal pipe sizes. As for the coupling types, the data indicated that the probability of failure of the threaded T-joint coupling was significantly higher than that of the grooved type. Finally, the seismic capacity of the schedule 40 wall thickness was weaker than that of schedule 10 in the 4-inch grooved coupling, due to the difference in the prohibition of energy dissipation. Therefore, this assessment can contribute to the damage detection and financial losses due to failure of the joint piping system in a liquid pipeline, prior to the decision-making.

A Study on the High Temperature Gas Nitriding Heat Treatment of STS 347 and STS 310S Austenitic Stainless Steel (STS 347 및 STS 310S 오스테나이트계 스테인리스강의 고온 가스질화 열처리 특성 연구)

  • Yoo, Dae Kyoung;Kong, Jung Hyun;Lee, Hea Joeng;Sung, Jang Hyun;Lee, Hae Woo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.708-712
    • /
    • 2008
  • The influence of high temperature gas nitriding (HTGN) in STS347 and STS310S steels was experimentally investigated. The HTGN was carried out at $1,050^{\circ}C{\sim}1,150^{\circ}C$ for 10 hrs in a gaseous atmosphere containing $1kg/mm^2$ of nitrogen. After HTGN, fine precipitates of $Cr_2N$ and NbN appeared in austenite on the surface of STS 347, while nitrogen pearlite, which was layeredof $Cr_2N$ and austenite alternatively, appeared in austenite on the surface of STS 310S. The surface hardness of HTGN-treated, STS 347 and STS 310S specimens was 250~360 Hv and 270~400 Hv, respectively, depending on the temperature of HTGN. The nitrogen content was analyzed 1.4 wt% and 1.6 wt% at the surface layer of STS 347 and STS 310S steels, respectively. In addition, an improvement in the corrosion resistance of HTGN treated specimens was observed.

Simulated squirrel search algorithm: A hybrid metaheuristic method and its application to steel space truss optimization

  • Pauletto, Mateus P.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.579-590
    • /
    • 2022
  • One of the biggest problems in structural steel calculation is the design of structures using the lowest possible material weight, making this a slow and costly process. To achieve this objective, several optimization methods have been developed and tested. Nevertheless, a method that performs very efficiently when applied to different problems is not yet available. Based on this assumption, this work proposes a hybrid metaheuristic algorithm for geometric and dimensional optimization of space trusses, called Simulated Squirrel Search Algorithm, which consists of an association of the well-established neighborhood shifting algorithm (Simulated Annealing) with a recently developed promising population algorithm (Squirrel Search Algorithm, or SSA). In this study, two models are tried, being respectively, a classical model from the literature (25-bar space truss) and a roof system composed of space trusses. The structures are subjected to resistance and displacement constraints. A penalty function using Fuzzy Logic (FL) is investigated. Comparative analyses are performed between the Squirrel Search Algorithm (SSSA) and other optimization methods present in the literature. The results obtained indicate that the proposed method can be competitive with other heuristics.

Multi-objective structural optimization of spatial steel frames with column orientation and bracing system as design variables

  • Claudio H. B. de Resende;Luiz F. Martha;Afonso C. C. Lemonge;Patricia H. Hallak;Jose P. G. Carvalho;Julia C. Motta
    • Advances in Computational Design
    • /
    • v.8 no.4
    • /
    • pp.327-351
    • /
    • 2023
  • This article explores how multi-objective optimization techniques can be used to design cost-effective and structurally optimal spatial steel structures, highlighting that optimizing performance can be as important as minimizing costs in real-world engineering problems. The study includes the minimization of maximum horizontal displacement, the maximization of the first natural frequency of vibration, the maximization of the critical load factor concerning the first global buckling mode of the structure, and weight minimization as the objectives. Additionally, it outlines a systematic approach to selecting the best design by employing four different evolutionary algorithms based on differential evolution and a multi-criteria decision-making methodology. The paper's contribution lies in its comprehensive consideration of multiple conflicting objectives and its novel approach to simultaneous consideration of bracing system, column orientation, and commercial profiles as design variables.

Ubiquitous Computing Technology Based Environmental Monitoring and Diagnosis System : Architecture and Case Study (유비쿼터스 컴퓨팅 기술 기반 환경 모니터링/진단 시스템의 아키텍처 및 사례 연구)

  • Yoon, Joo-Sung;Hwang, Jung-Min;Suh, Suk-Hwan;Lee, Chang-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.36 no.4
    • /
    • pp.230-242
    • /
    • 2010
  • In this paper, an environmental monitoring and diagnosis system based on ubiquitous computing technology, shortly u-Eco Monitoring System, is proposed. u-Eco Monitoring System is designed to: 1) Collect information from the manufacturing processes via ubiquitous computing technology, 2) Analyze the current status, 3) Identify the cause of problem if detected by rule-based and case-based reasoning, and 4) Provide the results to the operator for proper decision making. Based on functional modeling, a generic architecture is derived, followed by application to a manufacturing system in iron and steel making industry. Finally, to show the validity of the proposed method, a prototype is developed and tested. The developed methods can be used as a conceptual framework for designing environmental monitoring and diagnosis system for industrial practices by which monitoring accuracy and response time for abnormal status can be significantly enhanced, and relieving operator pressure from manual monitoring and error-prone decision making.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

Phase Changes during High Temperature Gas Nitriding of Nb Alloyed STS 444 Ferritic Stainless steel (Nb이 첨가된 STS 444 페라이트계 스테인리스강의 고온질화 열처리시 조직변화)

  • Kong, J.H.;Yoo, D.K.;Lee, H.W.;Kim, Y.H.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.6
    • /
    • pp.323-328
    • /
    • 2007
  • This study has been investigated the effect of high temperature gas nitriding (HTGN) heat treatment of STS 444 (18Cr-0.01Ni-0.01C-0.2Nb) ferritic stainless steel in an atmosphere of nitrogen gas at the temperature range between $1050^{\circ}C\;and\;1150^{\circ}C$. The surface layer was changed into martensite and austenite with the nitrides of NbCrN by HTGN treatment. Due to the precipitation of nitrides and matrensite formation, the hardness of the surface layer showed $400Hv{\sim}530Hv$. The nitrogen concentration of the surface layer appeared as 0.05%, 0.12% and 0.92%, respectively, at $1050^{\circ}C,\;1100^{\circ}C\;and\;1150^{\circ}C$. When the nitrogen is permeated from surface to interior, Nb and Cr, which have strong affinities with nitrogen, also move from interior to surface. Therefore it is considered that this counter-current of atoms promotes the formation of NbCrN at the surface layer.

Phase Changes of the STS 431 Martensitic Stainless Steel after High Temperature Gas Nitriding Treatment (STS 431 마르텐사이트계 스테인리스강의 고온 가스 질화 열처리에 따른 상변화)

  • Yoo, D.K.;Kong, J.H.;Lee, H.W.;Kang, C.Y.;Kim, Y.H.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.5
    • /
    • pp.244-250
    • /
    • 2008
  • This study has investigated the surface phase change, hardness variation, surface precipitates, nitrogen content and corrosion resistance in STS 431 (17Cr-2Ni-0.2C-0.01Nb) martensitic stainless steel after high temperature gas nitriding (HTGN) treatment at the temperature range between $1050^{\circ}C$ and $1150^{\circ}C$. The HTGN-treated surface layer appeared $Cr_2N$ of rod type, carbo-nitride of round type and fine precipitates in the austenite matrix. On the other hand the interior region where the nitrogen was not permeated, exhibited martensite phase. The surface hardness showed 250~590 HV, depending on the HTGN treatment conditions, while the interior martensitic phase represented 520 HV. The permeation depth of nitrogen increased with increasing the HTGN-treated temperature. The nitrogen concentration of the surface layer appeared approximately ~0.17% at $1100^{\circ}C$. On comparing the corrosion resistance between solution-annealed and HTGN-treated steels, the corrosion resistance of HTGN-treated steel was superior to that of solution-annealed specimens.

On the direct strength and effective yield strength method design of medium and high strength steel welded square section columns with slender plate elements

  • Shen, Hong-Xia
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.497-516
    • /
    • 2014
  • The ultimate carrying capacity of axially loaded welded square box section members made of medium and high strength steels (nominal yield stresses varying from 345 MPa to 460 MPa), with large width-to-thickness ratios ranging from 35 to 70, is analyzed by finite element method (FEM). At the same time, the numerical results are compared with the predicted results using Direct Strength Method (DSM), modified DSM and Effective Yield Strength Method (EYSM). It shows that curve a, rather than curve b recommended in Code for design of steel structures GB50017-2003, should be used to check the local-overall interaction buckling strength of welded square section columns fabricated from medium and high strength steels when using DSM, modified DSM and EYSM. Despite all this, EYSM is conservative. Compared to EYSM and modified DSM, DSM provides a better prediction of the ultimate capacities of welded square box compression members with large width-thickness ratios over a wide range of width-thickness ratios, slenderness ratios and steel grades. However, for high strength steels (nominal yield strength greater than 460 MPa), the numerical and existent experimental results indicate that DSM overestimates the load-carrying capacities of the columns with width-thickness ratio smaller than 45 and slenderness ratio less than 80. Further, for the purpose of making it suitable for a wider scope, DSM has been modified (called proposed modified DSM). The proposed modified DSM is in excellent agreement with the numerical and existing experimental results.

A Study on the Development of Checklist for Safety Management of Frequently occured Accident Process in Steel Structural Work (철골공사 재해다발공정의 안전관리를 위한 체크리스트 개발에 관한 연구)

  • Hong Hyun-Seok;Yeo Seong-Jin;Jeong Young-Heun;Kim Chang-Duk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.552-555
    • /
    • 2004
  • As the scale of building construction is larger and more complex, accident is increasing on the steel structure work process. But Safety-Inspection has been carried out through many other checklists in the workplace, it hasn't been used actively. Because checklist wasn't written at the level of specific work and applied scope is Insufficient. So, we must grasp accidental cause about detailed work for making safety management checklist accurately. For this study, we are confining a range to steel structure work of all the building construction. We will classify steel structure process into the detailed work for preventing accident. And we will grasp accidental cause about detailed work for developing the checklist in the future.

  • PDF