• Title/Summary/Keyword: Steel Frame

Search Result 1,460, Processing Time 0.023 seconds

Performance of TMDs on nonlinear structures subjected to near-fault earthquakes

  • Domizio, Martin;Ambrosini, Daniel;Curadelli, Oscar
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.725-742
    • /
    • 2015
  • Tuned mass dampers (TMD) are devices employed in vibration control since the beginning of the twentieth century. However, their implementation for controlling the seismic response in civil structures is more recent. While the efficiency of TMD on structures under far-field earthquakes has been demonstrated, the convenience of its employment against near-fault earthquakes is still under discussion. In this context, the study of this type of device is raised, not as an alternative to the seismic isolation, which is clearly a better choice for new buildings, but rather as an improvement in the structural safety of existing buildings. Seismic records with an impulsive character have been registered in the vicinity of faults that cause seismic events. In this paper, the ability of TMD to control the response of structures that experience inelastic deformations and eventually reach collapse subject to the action of such earthquakes is studied. The results of a series of nonlinear dynamic analyses are presented. These analyses are performed on a numerical model of a structure under the action of near-fault earthquakes. The structure analyzed in this study is a steel frame which behaves as a single degree of freedom (SDOF) system. TMD with different mass values are added on the numerical model of the structure, and the TMD performance is evaluated by comparing the response of the structure with and without the control device.

Semi-active control of seismic response of a building using MR fluid-based tuned mass damper

  • Esteki, Kambiz;Bagchi, Ashutosh;Sedaghati, Ramin
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.807-833
    • /
    • 2015
  • While tuned mass dampers are found to be effective in suppressing vibration in a tall building, integrating it with a semi-active control system enables it to perform more efficiently. In this paper a forty-story tall steel-frame building designed according to the Canadian standard, has been studied with and without semi-active and passive tuned mass dampers. The building is assumed to be located in the Vancouver, Canada. A magneto-rheological fluid based semi-active tuned mass damper has been optimally designed to suppress the vibration of the structure against seismic excitation, and an appropriate control procedure has been implemented to optimize the building's semi-active tuned mass system to reduce the seismic response. Furthermore, the control system parameters have been adjusted to yield the maximum reduction in the structural displacements at different floor levels. The response of the structure has been studied with a variety of ground motions with low, medium and high frequency contents to investigate the performance of the semi-active tuned mass damper in comparison to that of a passive tuned mass damper. It has been shown that the semi-active control system modifies structural response more effectively than the classic passive tuned mass damper in both mitigation of maximum displacement and reduction of the settling time of the building.

Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations

  • Terzi, Niyazi U.;Erenson, C.;Selcuk, Murat E.
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.447-464
    • /
    • 2015
  • Millions of scrap tires are discarded annually in Turkey. The bulk of which are currently landfilled or stockpiled. These tires consume valuable landfill space or if improperly disposed, create a fire hazard and provide a prolific breeding ground for rats and mosquitoes. Used tires pose both a serious public and environmental health problem which means that economically feasible alternatives for scrap tire disposal must be found. Some of the current uses of scrap tires are tire-derived fuel, creating barrier reefs and as an asphalt additive in the form of crumb rubber. However, there is a much need for the development of additional uses for scrap tires. One development the creation of shreds from scrap tires that are coarse grained, free draining and have a low compacted density thus offering significant advantages for use as lightweight subgrade fill and backfill material. This paper reports a comprehensive laboratory study that was performed to evaluate the use of a shredded tire-sand mixture as a backfill material in trench conditions. A steel frame test tank with glass walls was created to replicate a classical trench section in field conditions. The results of the test demonstrated that shredded tires mixed with sand have a definite potential to be effectively used as backfill material for buried pipe installations.

Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures (쌍곡선포물선 대공간 구조물의 측벽개구율에 따른 지붕의 풍압특성)

  • You, Jang-Youl;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • There can be diverse causes in the destruction of a large space structure by strong wind such as characteristics of construction materials and changes in internal and external wind pressure of the structure. To evaluate the wind pressure of roof against the large space structure, wind pressure experiment is performed. However, in this wind pressure experiment, peak internal pressure coefficient is set according to the opening of the roof in Korea wind code. In this article, it was tried to identify the change of internal pressure coefficient and the characteristics of wind pressure coefficient acting on the roof by two kinds of opening on the side of the structure with Hyperbolic Paraboloid Spatial Structures roof. When analyzing internal pressure coefficient according to roof shape, it was found that minimum (52%) and maximum (30%~80%) overestimation was made comparing to partial opening type proposed in the current wind load. It is judged that evaluation according to the opening rate of the structure should be made to evaluate the internal pressure coefficient according to load.

A Study on the Improvement of Properties of Sprayed $Al_2O_3$ Ceramic Coating Layer. ($Al_2O_3$세라믹 용사피막의 특성개선에 관한 연구)

  • 김정일;이주원;최영국;김영식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.49-58
    • /
    • 2000
  • Thermal spraying is one of the most common surface coating techniques to be used for many applications and flame spraying covers a wide range of different materials which can be coated onto various substrates. The purpose of this study is to investigate the effects of mixed ratio in composite coatings on the mechanical and anti-corrosion properties. The five different types of composite coatings were made with $Al_2O_3$ ceramic and Ni-alloy powder on the mild steel substrate by flame spraying method. The mechanical properties such as microhardness, adhesive strength and erosion resistance and corrosion resistance were tested for the sprayed coating specimens. The results obtained are summarized as follows; 1. The composite coating layers greatly improve the microstructure, erosion resistance and adhesive strength by increasing the content of Ni-Al alloy. 2. Microhardness of the compsite coating layer is decreased by increasing the content of Ni-Al alloy. 3. The anti-corrosion properties is considerably improved by increasing the compsite rate of Ni-Al alloy.

  • PDF

Development of a Finite Element Model for Crashworthiness Analysis of a Small-Sized Bus (소형버스 정면 충돌 특성 해석을 위한 유한요소 모델의 개발)

  • 김학덕;송주현;오재윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.153-161
    • /
    • 2002
  • This paper develops a finite element model for crashworthiness analysis ova small-sized bus. The full vehicle finite element model is composed of 31,982 shell elements,599 beam elements,42 bar elements, and 34,204 nodes. The model uses four material models (such as elastic, elastic-plastic(steel), rigid. and elastic-plastic (rubber) material model) of PAM-CRASH. The model uses four contact types to define sliding interfaces in ten areas. A frontal crash test using an actual vehicle with 30mph velocity to a rigid barrier is carried out. Vehicle pulses at lower part of left and right b-pillar are measured, and deformed shapes of frame and driver seat's lower left area are photographed. A frontal crash simulation using the developed full vehicle finite element model is performed with PAM-CRASH installed in super computer SP2. The simulation is performed with the same conditions as the test. The measured vehicle pulses and photographed deformed shapes from the test are compared to ones from the simulation to validate the reliability of the developed model.

FT-NIR SPECTROSCOPY FOR QUALITY AND PROCESS CONTROL IN DEPTH FILTER SHEETS PRODUCTION

  • Jansen, Christoph;Ebert, Jurgen
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3122-3122
    • /
    • 2001
  • Documented quality control plays a vital role I the production of technical “Depth filter” sheets used in industries such as Beverage and pharmaceutical. Depth filter sheets which can be up to several millimeters thick are stacker in plate and frame filter systems. They are the core of stainless steel filter systems which can be up to several meters high. FT-NIR Spectroscopy has many potential applications in the whole production line of filter sheets. Raw materials such as different types of cellulose pads, white powdery fillers (e.g. Kieelgur, Perlite) or liquid chemicals such as wet-strength agents we, with the help of NIR, easy to identify. NIR can also determine physical parameters such as particle size, essential for the filtration behavior. FT-NIR can be used for the quality parameters of the final product. Moisture and permeability can be determined, and with the help of the speed of this NIR method it is possible to correct possible faults quickly in the production process. Waste production can be minimized which is good for both the product profitability and the environment. Further tests have shown that it is also possible to use NIR on-line in the production area, to check the concentrations and the homogeneity of the paper suspension consisting of cellulose fibres, fillers and additives.

  • PDF

A Numerical Analysis of Tolerable Settlement for Bridges (수치해석에 의한 중소형교량 교량기초의 허용침하량 평가)

  • Jung, Gyung-Ja;Jeon, Kyung-Soo;Cho, Jun-Sang;Lee, Sang-Heon;Byun, Hyung-Kyoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.569-579
    • /
    • 2010
  • Tolerable vertical displacement of a bridge is dependent on the superstructure-type, slope, span, and etc.. In the design stage, however, resultant force of cross section is examined supposed that the settlement is 1 cm at the bearing point. And the 1cm is sometimes considered as if the criteria of allowable foundation settlement. It is needed to establish the criteria of the tolerable displacement for the small and middle bridges which are widely used in domestic area. The design data of domestic bridges including expressway bridges were collected and analyzed according to the types of superstructures and foundations. And numerical simulations were conducted for RC rigid frame bridges, PSC girder bridges, IPC girder bridges, PSC box girder bridges, and steel box girder bridges to examine the tolerable displacements.

  • PDF

Flexural Capacity of RC Composited H-Pile (철근콘크리트 합성 H-Pile의 휨성능)

  • Kim, Min-June;Shin, Geun-Ock;Jeong, Je-Pyong
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.563-570
    • /
    • 2016
  • The composited structural member in which two or more materials having different stress-strain relationships (steel & concrete) has increased greatly in recent years. This paper presents the experimental results of flexural capacity of the composited H-Pile subjected to bending moment. Eight composited beams were tested under direct loading condition using the frame tester. Based on the experimental results it is noted that flexural capacity of composited H-Pile increased about 20~30% and ductility ratio significantly increased. Limit state analysis of the specimens was conducted and the result shows that flexural strength by limit state analysis is conservative.

Experimental Analysis on the Criteria of the Explosion Damage for One-way RC Slabs (일방향 철근 콘크리트 슬래브의 폭발 피해 기준에 대한 실험적 분석)

  • Lee, Seung Jae;Park, Jong Yil;Lee, Young Hak;Kim, Hie Sik
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.6
    • /
    • pp.68-74
    • /
    • 2017
  • To predict the damage of Reinforced Concrete (RC) structures from mass explosion, Pressure-Impulse (P-I) curves representing the relationship between peak pressure and impulse based on damage criteria are essential. There are P-I curves developed by the U.S. DoD without detailed explanation regarding validation. In this study, full scale explosion tests were conducted measuring response of RC slab to modify and validate pre-existing P-I curves. Four same RC slabs were prepared, and placed at different distances, which are fixed to steel frame with concrete base. Scaled distances were selected to show different failure types using P-I curve based on Single Degree Of Freedom (SDOF) model. It was found that SDOF model can be used to evaluate and identify one-way RC slab damage with difference damage criteria.