• 제목/요약/키워드: Steel Composite Railway Bridge

검색결과 67건 처리시간 0.024초

PC-Slab 합성 철도판형교 유도상화 시험부설에 따른 성능 비교평가 (Capacity evaluation of PC-slab composite actions for the railway steel plate girder according to an experimental construction)

  • 민경주;이성욱;최형수;우용근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.697-706
    • /
    • 2011
  • There are more than 800 railway steel plate girder bridges which are in use and the total length is approximately 50 km. Among these, it shall be pointed out that non-ballast rail systems which lay on wood sleepers are the most critical members. To strengthen this type of structures, mainly two methods have been applied. The first one is the most typical method which is to replace the girders with slab girder system or steel composite girders and to add ballast. It is not uncommon that the construction cost of substructure is more than ten time higher than that of superstructures and even in this case, the structural uncertainty for the substructures is not diminished. To resolve above mentioned problems, new method was developed to rehabilitate railway steel girder bridge by adding PC-slab using transport equipment. Using this method, substructure strengthen is rarely required because the additional weight to the bridge superstructure is only up to 1.0t/m. Also it was possible to save the construction cost by reducing construction duration and by simplifying the construction process. Experimental construction was performed for Jewon bridge and measurements were performed before and after construction to verify the bridge capacity.

  • PDF

동조질량감쇠기를 장착한 강합성형 고속철도교의 피로신뢰성 평가 (Fatigue Reliability Evaluation of Steel-Composite High-Speed Railway Bridge with Tuned Mass Damper)

  • 강수창;서정관;고현무;박관순
    • 한국지진공학회논문집
    • /
    • 제9권5호
    • /
    • pp.1-10
    • /
    • 2005
  • 본 연구에서는 고속철도 강합성형 교통비 동적해석에 기반한 피로신뢰성평가 기법을 제시하고 동조질량감쇠기의 효과를 피로수명연장 측면에서 검토하였다. 피로 신뢰성 평가를 수행하기 위하여 S-N 곡선 및 선형누적손상이론을 이용하여 한계상태식을 설정하였다. 열차 속도와 교량 감쇠비의 불확실성을 고려하여 교량에 대한 반복적인 동적해석을 수행하고, 이 결과로부터 전체 교량수명동안에 교량이 받는 피로 손상도와 연관된 확률변수의 특성을 통계적으로 추정하였다. 최종적으로 결정된 확률변수와 한계상태식에 개선된 일계이차모멘트법(AFOSM)을 적용하여 피로 신뢰도 지수를 산정하였다. 40m 지간 강합성교량의 수치모사로부터 동조질량감쇠기 장착여부에 따라 피로 신뢰도 지수를 평가하고 그 결과를 제시하였다.

철도용 SCP합성거더교의 LCC 분석에 관한 연구 (Life Cycle Cost Analysis of SCP Composite Girder Bridge for Railroad)

  • 김대성;조선규;권책;최영민
    • 한국철도학회논문집
    • /
    • 제9권2호
    • /
    • pp.244-249
    • /
    • 2006
  • Recently, the SCP(Steel Confined Prestressed concrete) composite girders are developed to improve the characteristic such as displacement, vibration, and heavy dead load due to influence of self weight, and inefficiency of steel section of exiting girder-type railroad bridges. It is needed to verify the economical effciency of newly developed SCP composite girder bridge compared with the conventional girder-type bridges. In this paper, LCC analysis for alternative railroad bridges Is performed and its technique based on level of risk(probability of failure) is suggested. From the results, it may be stated that SCP composite girder bridge is more economical than a conventional one.

강철도교에 대한 외부 후긴장 보강공법의 적용에 관한 연구 (A study on the Steel Plate Girder Railway bridge in the applying External Post-tensioning Method)

  • 최정열;박용걸;변종걸
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1034-1039
    • /
    • 2004
  • The major objective of this study is to investigate the effects and application of reinforcement for steel plate girder railway bridge by the external prestressing method. It analyzed the mechanical behaviors of non-ballasted railway bridge with ballast reinforced and external post-tensioning reinforced on the finite clement analysis for the static and dynamic behavior. As a result, the reinforcement of ballasted railway bridge the external prestressing method are obviously effective for the additional dead force which is ballast. The analytical study are carried out to investigate the post-tension force decrease bending behavior and deflection in composite bridge for serviceability. To develop two type FEM model which reflect well the post-tension force transverse distribution behavior of servicing bridge. With the comparing the results of railway bridge with ballast which carried out before the post-tensioning with the results of railway bridge with ballast which carried out after post-tensioning, It is investigated that the additional dead load decrease effect and bending behavior of servicing bridge is effect by the post-tensioning. The reinforcement by using the external tendon can be reducing that structure of a degradation phenomenon by unusual stresses due to additional dead load and other problems.

  • PDF

Analysis of the variability of deflection of a prestressed composite bridge deck

  • Staquet, Stephanie;Detandt, Henri;Espion, Bernard
    • Steel and Composite Structures
    • /
    • 제4권5호
    • /
    • pp.385-402
    • /
    • 2004
  • Nearly 400 composite railway bridge decks of a new kind belonging to the trough type with U-shaped cross section have been constructed in Belgium over the last fifteen years. The construction of these bridge decks is rather complex with the preflexion of precambered steel girders, the prestressing of a concrete slab and the addition of a 2nd phase concrete. Until now, they have been designed with a classical computation method using a pseudo-elastic analysis with modular ratios. Globally, they perform according to the expectations but variability has been observed between the measured and the computed camber of these bridge decks just after the transfer of prestressing and also at long-term. A statistical analysis of the variability of the relative difference between the measured camber and the computed camber is made for a sample of 36 bridge decks using no less than 10 variables. The most significant variables to explain this variability at prestressing are the ratio between the maximum tensile stress reached in the steel girders during the preflexion and the yield strength and the type of steel girder. For the same sample, the long-term camber under permanent loading is computed by two methods and compared with measurements taken one or two years after the construction. The camber computed by the step-by-step method shows a better agreement with the measured camber than the camber computed by the classical method. The purpose of the paper is to report on the statistical analysis which was used to determine the most significant parameters to consider in the modeling in order to improve the prediction of the behaviour of these composite railway bridge decks.

차세대고속열차 운행에 따른 호남고속선 강합성교의 동특성 분석 (Dynamic Behavior of Composite Steel Girder Bridge Exceeding Train Speed 350km/h)

  • 김은성;박종웅;심성한
    • 한국산학기술학회논문지
    • /
    • 제14권7호
    • /
    • pp.3518-3527
    • /
    • 2013
  • 새로 개발된 차세대고속열차(HEMU-430X)가 400km/h 이상의 고속운행을 앞두고 있으나, 우리나라 철도설계기준은 350km/h이하의 운행속도에 대한 지침을 제시하고 있으며, 호남고속선도 350km/h이하의 기준을 적용하여 설계되었다. 350km/h를 초과하는 고속운행에 대해 기존 인프라의 성능을 검토하고, 고속운행을 대비한 설계기준 마련이 시급한 바, 이 연구에서는 증속에 대한 경부선 가야고가에 대해 시뮬레이션하고, 차세대고속열차(HEMU-430X) 시험운행 중 측정된 가야고가의 가속도, 변위 데이터를 비교, 검토하여 350km/h이상의 열차운행에 대한 강합성 소수주형교의 동적거동을 분석하였다. 경부고속선 가야고가 분석결과를 토대로 내년도 완공을 앞두고 있는 호남고속선 연정교에 대해 수치해석을 통해 실제 HEMU 시범운행시 발생할 수 있는 동적 거동을 예측하였다.

Design and modelling of pre-cast steel-concrete composites for resilient railway track slabs

  • Mirza, Olivia;Kaewunruen, Sakdirat;Kwok, Kenny;Griffin, Dane W.P.
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.537-565
    • /
    • 2016
  • Australian railway networks possess a large amount of aging timber components and need to replace them in excess of 280 thousands $m^3$ per year. The relatively high turnover of timber sleepers (crossties in a plain track), bearers (skeleton ties in a turnout), and transoms (bridge cross beams) is responsible for producing greenhouse gas emissions 6 times greater than an equivalent reinforced concrete counterparts. This paper presents an innovative solution for the replacement of aging timber transoms installed on existing railway bridges along with the incorporation of a continuous walkway platform, which is proven to provide environmental, safety and financial benefits. Recent developments for alternative composite materials to replace timber components in railway infrastructure construction and maintenance demonstrate some compatibility issues with track stiffness as well as structural and geometrical track systems. Structural concrete are generally used for new railway bridges where the comparatively thicker and heavier fixed slab track systems can be accommodated. This study firstly demonstrates a novel and resilient alterative by incorporating steel-concrete composite slab theory and combines the capabilities of being precast and modulated, in order to reduce the depth, weight and required installation time relative to conventional concrete direct-fixation track slab systems. Clear benefits of the new steel-concrete composites are the maintainability and constructability, especially for existing railway bridges (or brown fields). Critical considerations in the design and finite element modelling for performance benchmarking of composite structures and their failure modes are highlighted in this paper, altogether with risks, compatibilities and compliances.

Reinforcement design of the top and bottom slabs of composite box girder with corrugated steel webs

  • Zhao, Hu;Gou, Hongye;Ni, Ying-Sheng;Xu, Dong
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.537-550
    • /
    • 2019
  • Korea and Japan have done a lot of research on composite girders with corrugated steel webs and built many bridges with corrugated steel webs due to the significant advantages of this type of bridges. Considering the demanding on the calculation method of such types of bridges and lack of relevant reinforcement design method, this paper proposes the spatial grid analysis theory and tensile stress region method. First, the accuracy and applicability of spatial grid model in analyzing composite girders with corrugated steel webs was validated by the comparison with models using shell and solid elements. Then, in a real engineering practice, the reinforcement designs from tensile stress region method based on spatial grid model, design empirical method and specification method are compared. The results show that the tensile stress region reinforcement design method can realize the inplane and out-of-plane reinforcement design in the top and bottom slabs in bridges with corrugated steel webs. The economy and precision of reinforcement design using the tensile stress region method is emphasized. Therefore, the tensile stress region reinforcement design method based on the spatial grid model can provide a new direction for the refined design of composite box girder with corrugated steel webs.

고속열차하중 하의 강합성형 철도교의 진동 (Vibration of Steel Composite Railway Bridges under High Speed Train)

  • 장승필;곽종원;하상길;김성일
    • 한국강구조학회 논문집
    • /
    • 제10권4호통권37호
    • /
    • pp.577-587
    • /
    • 1998
  • 본 연구에서는 열차하중이 강합성형 철도교의 동적응답에 미치는 영향을 연구하였다. 2개의 I-거더와 가로보로 구성된 판형교는 판요소와 공간뼈대요소를 이용하여 모델링하였으며, 상판과 주형의 offset은 완전합성을 가정하여 구속방정식을 이용하여 연결하였으며 트랙구조는 고전적인 탄성지반위의 보 이론을 사용하여 이상화하였다. 2PC+2MT+161T로 구성된 TGV열차의 수직처짐과 피칭회전을 고려한 2차원 수치모델을 개발하였다. 또한, 속도의존적 제동함수를 사용하여 열차의 제동을 고려하였다. 이동열차하중에 의한 교량의 동적거동 파악을 위하여 교량의 고유진동수 변화, speed parameter, 차량모델링 방법, 열차의 제동 등에 대한 매개변수연구를 수행하였다.

  • PDF

당산철교의 설계 (Design of Dang-San Steel Railway Bridge)

  • 유동호;김선일
    • 전산구조공학
    • /
    • 제12권4호
    • /
    • pp.69-69
    • /
    • 1999
  • Design of Dangsan Steel Railway Bridge(a part of Seoul Subway Line NO. 2), which is supposed to be replaced after its 15years survice, was done, and the reconstruction has begun in Dec. 1997. The design include new superstruc-ture and bridge piers, retrofitting of the foun-dation, rail system, electric and signal, etc. In this paper, design of the structure is mainly summarized. The main span superstructure, across Han river, is composite section which is com-posed of steel box and reinforced concrete deck slab with 9 span continuous. The superstructure for the approaches is bottom througth type 2-cell steel box girder with steel floor system and concrete deck slab with 3 or 4 span continuous. The bridge piers was planned to be reconstructed based upon the result from the various investi-gations, while the foundation(cassion and pile foundation) was planned to be retrofitted. For superstructure erection, the method of combination of barge bent and heavy lifting and the launching truss method was investigated for the main span and approach spans, respectively.

  • PDF