• Title/Summary/Keyword: Stearoyl-CoA Desaturase

Search Result 64, Processing Time 0.033 seconds

Carcass and Meat Characteristics and Gene Expression in Intramuscular Adipose Tissue of Korean Native Cattle Fed Finishing Diets Supplemented with 5% Palm Oil

  • Park, Sungkwon;Yan, Zhang;Choi, Changweon;Kim, Kyounghoon;Lee, Hyunjeong;Oh, Youngkyoon;Jeong, Jinyoung;Lee, Jonggil;Smith, Stephen B.;Choi, Seongho
    • Food Science of Animal Resources
    • /
    • v.37 no.2
    • /
    • pp.168-174
    • /
    • 2017
  • We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase (SCD) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased (p<0.05) expression of AMP-activated protein kinase-${\alpha}$ and peroxisome proliferator-activated receptor-${\gamma}$, but decreased (p<0.05) CAAT/enhancer binding protein-${\beta}$ gene expression and tended to decrease stearoyl-CoA desaturase gene expression in i.m. adipose tissue. Palm oil increased total i.m. polyunsaturated fatty acids (p<0.05) compared to the control i.m. adipose tissue, but had no effect on saturated or monounsaturated fatty acids. Although there were significant effects of supplemental palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle.

Regulation of Fat and Fatty Acid Composition in Beef Cattle

  • Smith, Stephen B.;Gill, Clare A.;Lunt, David K.;Brooks, Matthew A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1225-1233
    • /
    • 2009
  • Fat composition of beef, taken here to mean marbling, can be manipulated by time on feed, finishing diet, and breed type. These three factors also strongly influence the fatty acid composition of beef. Both the amount of marbling and the concentration of monounsaturated fatty acids (MUFA) increase with time on feed in grain-fed and pasture-fed cattle, but much more dramatically in grain-fed cattle. High-concentrate diets stimulate the activity of adipose tissue stearoyl-CoA desaturase (SCD), which is responsible for the conversion of saturated fatty acids (SFA) to their $\Delta{9}$ desaturated counterparts. Also, grain feeding causes a depression in ruminal pH, which decreases those populations of ruminal microorganisms responsible for the isomerization and hydrogenation of polyunsaturated fatty acids (PUFA). The net result of elevated SCD activity in marbling adipose tissue and depressed ruminal isomerization/hydrogenation of dietary PUFA is a large increase in MUFA in beef over time. Conversely, pasture depresses both the accumulation of marbling and SCD activity, so that even though pasture feeding increases the relative concentration of PUFA in beef, it also increases SFA at the expense of MUFA. Wagyu and Hanwoo cattle accumulate large amounts of marbling and MUFA, and Wagyu cattle appear to be less sensitive to the effects of pastures in depressing overall rates of adipogenesis and the synthesis of MUFA in adipose tissues. There are small differences in fatty acid composition of beef from Bos indicus and Bos taurus cattle, but diet and time on feed are much more important determinants of beef fat content and fatty acid composition than breed type.

Carrot Juice Administration Decreases Liver Stearoyl-CoA Desaturase 1 and Improves Docosahexaenoic Acid Levels, but Not Steatosis in High Fructose Diet-Fed Weanling Wistar Rats

  • Mahesh, Malleswarapu;Bharathi, Munugala;Reddy, Mooli Raja Gopal;Kumar, Manchiryala Sravan;Putcha, Uday Kumar;Vajreswari, Ayyalasomayajula;Jeyakumar, Shanmugam M.
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.3
    • /
    • pp.171-180
    • /
    • 2016
  • Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent liver diseases associated with an altered lifestyle, besides genetic factors. The control and management of NAFLD mostly depend on lifestyle modifications, due to the lack of a specific therapeutic approach. In this context, we assessed the effect of carrot juice on the development of high fructose-induced hepatic steatosis. For this purpose, male weanling Wistar rats were divided into 4 groups, fed either a control (Con) or high fructose (HFr) diet of AIN93G composition, with or without carrot juice (CJ) for 8 weeks. At the end of the experimental period, plasma biochemical markers, such as triglycerides, alanine aminotransferase, and ${\beta}$-hydroxy butyrate levels were comparable among the 4 groups. Although, the liver injury marker, aspartate aminotransferase, levels in plasma showed a reduction, hepatic triglycerides levels were not significantly reduced by carrot juice ingestion in the HFr diet-fed rats (HFr-CJ). On the other hand, the key triglyceride synthesis pathway enzyme, hepatic stearoyl-CoA desaturase 1 (SCD1), expression at mRNA level was augmented by carrot juice ingestion, while their protein levels showed a significant reduction, which corroborated with decreased monounsaturated fatty acids (MUFA), particularly palmitoleic (C16:1) and oleic (C18:1) acids. Notably, it also improved the long chain n-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA; C22:6) content of the liver in HFr-CJ. In conclusion, carrot juice ingestion decreased the SCD1-mediated production of MUFA and improved DHA levels in liver, under high fructose diet-fed conditions. However, these changes did not significantly lower the hepatic triglyceride levels.

Sterculic Acid and Its Analogues Are Potent Inhibitors of Toxoplasma gondii

  • Hao, Pan;Alaraj, Intisar Q.M.;Al Dulayymi, Juma'a R.;Baird, Mark S.;Liu, Jing;Liu, Qun
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.2
    • /
    • pp.139-145
    • /
    • 2016
  • Toxoplasmosis is a serious disease caused by Toxoplasma gondii, one of the most widespread parasites in the world. Lipid metabolism is important in the intracellular stage of T. gondii. Stearoyl-CoA desaturase (SCD), a key enzyme for the synthesis of unsaturated fatty acid is predicted to exist in T. gondii. Sterculic acid has been shown to specifically inhibit SCD activity. Here, we examined whether sterculic acid and its methyl ester analogues exhibit anti-T. gondii effects in vitro. T. gondii-infected Vero cells were disintegrated at 36 hr because of the propagation and egress of intracellular tachyzoites. All test compounds inhibited tachyzoite propagation and egress, reducing the number of ruptured Vero cells by the parasites. Sterculic acid and the methyl esters also inhibited replication of intracellular tachyzoites in HFF cells. Among the test compounds, sterculic acid showed the most potent activity against T. gondii, with an $EC_{50}$ value of $36.2{\mu}M$, compared with $EC_{50}$ values of $248-428{\mu}M$ for the methyl esters. Our study demonstrated that sterculic acid and its analogues are effective in inhibition of T. gondii growth in vitro, suggesting that these compounds or analogues targeting SCD could be effective agents for the treatment of toxoplasmosis.

Effects of Growth Hormone Gene Polymorphism on Lipogenic Gene Expression Levels in Diaphragm Tissues of Japanese Black Heifers

  • Ardiyanti, Astrid;Abe, Tsuyoshi;Tameoka, Nanae;Kobayashi, Eiji;Shoji, Noriaki;Ohtani, Yoshihisa;Suzuki, Keiichi;Roh, Sang-Gun;Katoh, Kazuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.8
    • /
    • pp.1055-1062
    • /
    • 2012
  • Two SNPs, i.e. L127V and T172M, of bovine growth hormone (GH) causing the presence of GH gene haplotypes A, B, and C was previously shown to alter intramuscular fatty acid (FA) composition in Japanese Black (JB) heifers. To determine the SNP effect on somatotropic hormone concentration and lipogenesis, we measured plasma GH, insulin, and insulin-like growth factor-1 (IGF-1) concentrations. We also measured mRNA levels of fatty acid synthase (FASN), stearoyl-coA desaturase (SCD), and sterol regulatory element binding proteins-1 (SREBP-1) and FA composition in diaphragm tissues. Heifers with genotype CC had the lowest plasma insulin concentration and FASN and SCD mRNA levels among genotypes. FASN mRNA levels in haplotype A tended to positively correlate with saturated FA (SFA) content and negatively correlated with C18:2 and unsaturated FA (USFA) contents. SCD mRNA levels in haplotype A positively correlated with monounsaturated FA (MUFA) contents and negatively correlated with C18:0 content. They also tended to positively correlate with C16:1, C18:1, and USFA contents and USFA/SFA ratio and negatively correlate with SFA content. Taken together, GH gene polymorphism affects the lipogenic genes expression levels and their relationships with fatty acid compositions in diaphragm tissues of JB heifers at 31 months of age.

Genome wide association study of fatty acid composition in Duroc swine

  • Viterbo, Vanessa S.;Lopez, Bryan Irvine M.;Kang, Hyunsung;Kim, Hoonseop;Song, Choul-won;Seo, Kang Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1127-1133
    • /
    • 2018
  • Objective: Genome wide association study was conducted to identify and validate candidate genes associated with fatty acid composition of pork. Methods: A total of 480 purebreed Duroc pigs were genotyped using IlluminaPorcine60k bead chips while the association test was implemented following genome-wide rapid association using Mixed Model and Regression-Genomic Control (GRAMMAR-GC) approach. Results: A total of 25, 29, and 16 single nucleotide polymorphisms (SNPs) were significantly associated with stearic (18:0), oleic (18:1) and saturated fatty acids (SFA), respectively. Genome wide significant variants were located on the same region of swine chromosome 14 (SSC14) that spanned from 120 to 124 Mb. Top SNP ALGA008191 was located at 5 kb near the stearoyl-CoA desaturase (SCD) gene. This gene is directly involved in desaturation of stearic acid into oleic acid. General relationship of significant SNPs showed high linkage disequilibrium thus genome-wide signals was attributed to SCD gene. However, understanding the role of other genes like elongation of very long chain fatty acids-3 (ELOVL3) located on this chromosomal segment might help in further understanding of metabolism and biosynthesis of fatty acids. Conclusion: Overall, this study provides evidence that validates SCD gene as strong candidate gene associated with fatty acid composition in Duroc pigs. Moreover, this study confirms significant SNPs near ELOVL3 gene.

Association of -867G>C, -877Gdel, and Exon 5G>T Polymorphisms in the Stearoyl-CoA Desaturase (SCD) Gene with Fatty Acid Composition in the M. longissimus dorsi Muscle of Hanwoo (Korean Cattle)

  • Cho, Yong-Min;Lee, Seung-Hwan;Park, Eung-Woo;Kim, Nam-Kuk;Lim, Da-Jeong;Kim, Kyoung-Hoon;Park, Beom-Young;Lee, Chang-Soo;Oh, Sung-Jong;Kim, Tae-Hun;Yoon, Du-Hak
    • Food Science of Animal Resources
    • /
    • v.30 no.4
    • /
    • pp.655-660
    • /
    • 2010
  • This study aimed to identify genetic polymorphisms associated with fatty acid composition in Hanwoo beef. In this study, three SNPs (-867G>C, -877Gdel and 878T>C) were detected in SCD gene by DNA sequencing and PCR-RFLP. Statistical analysis revealed that 878T>C SNP was significantly associated with total saturated (p=0.016), unsaturated (p=0.016), and monounsaturated fatty acid (p=0.026) composition. However, the other two SNPs (-867G>C and -877Gdel) that are detected in the regulatory region of the SCD gene have no association with the fatty acid composition of Hanwoo meat. The 878C (alanine type) allele was found to be associated with 2.2% higher monounsaturated fatty acid, 1.5% lower saturated fatty acid, and 1.4% higher unsaturated fatty acid content than those associated with the 878T (valine type) allele. These results indicate that the non-synonymous SNP (878T>C) in the SCD gene could be a causal mutation that contributes to the MUFA variation in Hanwoo beef.

Kaurenoic acid, a Diterpene Derived from Aralia continentalis, Alleviates Lipogenesis in HepG2 Cells

  • Kim, Yu Gon;Kim, Jae Hyeon;Jo, Yong Wan;Kwun, Min Jung;Han, Chang Woo
    • The Journal of Korean Medicine
    • /
    • v.36 no.4
    • /
    • pp.74-79
    • /
    • 2015
  • Objectives: Here we investigated the anti-lipogenic potential of kaurenoic acid (KA), a diterpene derived from Aralia continentalis, in a cellular model of non-alcoholic fatty liver disease. Methods: HepG2 cells were treated with palmitate for 24h to induce intracellular lipid accumulation. To assess the influence of KA on steatotic HepG2 cells, various concentration of KA was co-administered. After palmitate treatment, Intracellular triglyceride content was measured. Expression level of several lipogenic genes, sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD-1) were measured using Western-blot analyses or RT-PCR. Results: Palmitate markedly increased intracellular triglyceride level and expression of related lipogenic genes in HepG2 cells, and which was relieved by co-administered KA. Conclusions: It is conceivable that that KA may have a pharmacological potential to reduce lipid accumulation in non-alcoholic fatty liver disease.

Inhibitory effect of Allium macrostemon extracts on adipogenesis of 3T3-L1 preadipocytes (산달래 추출물의 3T3-L1 지방전구세포 분화 억제 효능)

  • Lee, Joo-Yeon;Jeong, Yeju;Kim, Jina;Kim, Choon Young
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.441-449
    • /
    • 2020
  • The aim of this study was to compare the biological activities of whole-plant (WAE), bulb (BAE), and leaf (LAE) extracts of Allium macrostemon. The antioxidant activities, total polyphenol contents, and anti-adipogenic activities of WAE and LAE were superior to those of BAE, whereas the biological effects of WAE and LAE were similar. Therefore, the effect of LAE on adipogenesis was further investigated. Treatment of preadipocytes with LAE at 100 g/mL resulted in the inhibition of intracellular lipid accumulation by 49.64%. Consistent with this result, quantitative reverse transcription-PCR showed that LAE treatment decreased the gene expressions of CCAAT/enhancer-binding protein beta (C/EBPβ), peroxisome proliferator-activated receptor gamma (PPARγ), C/EBPα and stearoyl-CoA desaturase 1 (SCD1). Thus, LAE attenuates the adipogenesis of preadipocytes by suppressing the expression of adipogenic and lipogenic genes. These results suggest that LAE can be potentially useful as a functional ingredient to prevent obesity in the food industry.

The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil

  • Choi, Seong Ho;Park, Sung Kwon;Choi, Chang Weon;Li, Xiang Zi;Kim, Kyoung Hoon;Kim, Won Young;Jeong, Joon;Johnson, Bradley J.;Zan, Linsen;Smith, Stephen B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.404-412
    • /
    • 2016
  • We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and ${\alpha}$-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha ($AMPK{\alpha}$) and peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) $PPAR{\gamma}$ gene expression at the intermediate sample time. At the terminal sample time, $PPAR{\gamma}$ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). $AMPK{\alpha}$ gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta ($CEBP{\beta}$) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers. Contrary to our original hypothesis, palm oil did not promote adipogenic gene expression in s.c. and i.m. adipose tissue.