• 제목/요약/키워드: Steam efficiency

검색결과 444건 처리시간 0.032초

스팀분사 방식을 사용한 스팀 드럼세탁의 세탁성능 (Washing Efficiency of Drum Washing Machine Using Steam Jet System)

  • 정선영;장정대;박석규;정성해
    • 한국의류산업학회지
    • /
    • 제8권1호
    • /
    • pp.134-138
    • /
    • 2006
  • The washing efficiency of two types of washing machine- drum(drum washing) and drum using steam jet system(steam drum washing) was studied. The purpose of this paper is to clarify the performance of new steam drum washing. The relationship between washing temperature and washing efficiency(reflectance(%)) by soil removal, and that between washing temperature and electric energy consumption, Fabric damage evaluated by Danish wear method, Fabric shrinkage(%) during laundering were investigated, and compared with those in drum washing machine. Washing efficiency of steam drum washing according to washing temperature is better than that of drum washing. Electric energy consumption and fabric damage in steam drum washing are lower than those of drum washing. Fabric damage increased as washing temperature increased. Shrinkage of fabrics in steam drum washing and drum washing are about same. Therefore, we assumed that in the case of steam drum washing using steam jet system, washing efficiency remarkably increased, and fabric damage decreased, even with a lot of saving in given electric energy and water used.

스팀분사를 고려한 SOFC/GT 하이브리드 시스템의 설계 성능 비교 분석 (Design Performance Analysis of Solid Oxide Fuel Cell / Gas Turbine Hybrid Systems Considering Steam Injection)

  • 박성구;김동섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3224-3229
    • /
    • 2007
  • This study aims to analyse the influence of steam injection on the performance of hybrid systems combining a solid oxide fuel cell and a gas turbine. The steam is generated by recovering heat from the exhaust gas. Two system configurations, with difference being the operating pressure of the SOFC, are examined and effects of steam injection on performances of the two systems are compared. Two representative gas turbine pressure ratios are simulated and a wide range of both the fuel cell temperature and the turbine inlet temperature is examined. Without steam injection, the pressurized system generally exhibits better system efficiency than the ambient pressure system. Steam injection increases system power capacity for all design cases. However, its effect on system efficiency varies much depending on design conditions. The pressurized system hardly takes advantage of the steam injection in terms of the system efficiency. On the other hand, steam injection contributes to the efficiency improvement of the ambient pressure system in some design conditions. A higher pressure ratio provides a better chance of efficiency increase due to steam injection.

  • PDF

대형 터어빈계통의 고효율 배압시스템 개발에 관한 연구(I) (A Study on the Vacuum System for High Efficiency Marine Steam Turbine System)

  • 김경근;윤석환;김용모;김종헌;김철환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.13-24
    • /
    • 1994
  • The demand of clean energy, like liquefied gas(LNG), increase suddenly because it generates few polluting substances when burned and from the point of view with caloric value it generates ralatively less $CO_2$ gas than the other energy sources. LNG transpotion method of our country is marine transportion by ships because the LNG producing district is far away from Korea. Main engines for most LNG ships are steam turbines, and the efficiency of steam turbine is influenced by the degree of vacuum of main steam condenser. This paper introduce the design method of the vacuum system for high efficiency marine steam turbine. Especially, it is developed the CAD program for the large steam condenser and steam ejector. Also, it is designed the pilot plant including high pressure boiler for the performance test and maked a part of this plant.

  • PDF

증기조건 향상에 따른 증기터빈 기술 동향 (Steam Turbine Technology for Advanced Steam Condition)

  • 나운학;조성일;신훈;김영상;양승헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2174-2179
    • /
    • 2003
  • For many years, T/G Supplier has constructed a number of thermal power plants and researched to improve the performance and the reliability of steam turbine, which are achieved by advances in design and materials technology. In recent, interest is renewed in advanced steam condition as means of improving economy of thermal power plant and reducing environmental pollution. Improvements in the maximum power have been driven by the development of advanced rotor and bucket material and longer last stage bucket. Improvements in efficiency have been brought through advances in mechanical efficiency and thermodynamic efficiency. This paper describes a number of new steam path design features introduced to the steam turbine product. And also this paper describes new design technologies' development, new technologies' trend and technologies' development for ultra-super critical steam turbine.

  • PDF

吸氣冷却-蒸氣噴射 가스터빈 사이클에 관한 열역학적 연구 (A Thermodynamic Study on Suction Cooling-Steam Injected Gas Turbine Cycle)

  • 박종구;양옥룡
    • 대한기계학회논문집
    • /
    • 제16권1호
    • /
    • pp.77-86
    • /
    • 1992
  • 본 연구에서는 사이클은 터빈 출구로 부터 배출되는 폐열을 최대한 회수하여 얻은 증기를 연소기내에 분사시킴으로써 부가적인 압축기 및 비출력의 상향을 기할수 있다.아울러 폐열이용 암모니아 흡수기 냉동기를 구동하여 압축기 입구 온도를 낮 춤에 의해 열효율 및 비출력의 증대는 물론 대기온도 변화에 따른 기관 성능의 변동을 감소시킬 수 있다.

상용 프로그램을 이용한 열병합 발전용 고압(HP)-중압(IP) 증기터빈 모델의 성능해석에 대한 연구 (A Study on the Performance Analysis of the High Pressure - Intermediate Pressure Steam Turbine Model for Co-generation Plants using Commercial Programs)

  • 원종필;오승태;오정모
    • 해양환경안전학회지
    • /
    • 제29권4호
    • /
    • pp.395-406
    • /
    • 2023
  • 우리나라 열병합 발전소에서 운영되고 있는 최신 증기터빈의 출력과 효율 향상을 위한 첫 번째 기술적인 진보는 고온, 고압의 증기를 사용할 수 있는 소재 개발의 진척이라고 할 수 있다. 소재의 발전과 더불어 증기터빈의 내부효율 향상을 위한 설계적 노력의 결실로 높은 효율의 증기터빈이 제작되었다. 오랜 기간 운전 중인 증기터빈의 내부효율은 기계적 수명의 한계로 점차 손실이 발생하고 효율과 출력이 떨어지게 된다. 이러한 이유로 본 연구에서는 상용프로그램을 이용하여 열병합 발전소용 고압(HP)-중압(IP) 증기터빈의 증기유로 성능해석을 수행할 수 있는 모델을 개발하고 성능계산 방법을 제시하고자 한다. 증기터빈의 복잡한 성능계산방식으로 인해 증기터빈 실무자들에게 실질적으로 유용한 참고문헌이 될 수 있도록 주요 변수들을 제시하였다. 또한 증기터빈 성능계산에 필요한 열정산도 분석과 증기터빈 성능계산 결과의 적합성을 성능시험 결과와 비교 확인하였다.

지하자원개발을 위한 오일샌드플랜트의 DCSG 증기생산효율 평가에 관한 연구 (A Study on the Evaluation of DCSG Steam Efficiency of Oil Sand Plants for Underground Resources Development)

  • 김영배;정기진;정우현;정석우
    • 한국지열·수열에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.12-21
    • /
    • 2022
  • Steam assisted gravity drainage(SAGD) is a process that drills well in the underground oil sands layer, injects hightemperature steam, lowers the viscosity of buried bitumen, and recovers it to the ground. Recently, direct contact steam generator(DCSG) is being developed to maximize steam efficiency for SAGD process. The DCSG requires high technology to achieve pressurized combustion and steam generation in accordance with underground pressurized conditions. Therefore, it is necessary to develop a combustion technology that can control the heat load and exhaust gas composition. In this study, process analysis of high-pressurized DCSG was conducted to apply oxygen enrichment technology in which nitrogen of the air was partially removed for increasing steam production and reducing fuel consumption. As the process analysis conditions, methane as the fuel and normal air or oxygen enriched air as the oxidizing agent were applied to high-pressurized DCSG process model. A simple combustion reaction program was used to calculate the property variations for combustion temperature, steam ratio and residual heat in exhaust gas. As a major results, the steam production efficiency of DCSG using the pure oxygen was about 6% higher than that of the normal air due to the reducing nitrogen in the air. The results of this study will be used as operating data to test the demonstration device.

증기가 분사된 축류형 터빈의 성능해석에 관한 연구 (Study on the Performance Analysis of an Axial-Type Turbine with Steam Injection)

  • 조수용;김수용
    • 한국유체기계학회 논문집
    • /
    • 제4권4호
    • /
    • pp.28-36
    • /
    • 2001
  • Performance analysis is conducted on an axial-type turbine which is used for fire extinction by injecting water or steam into the turbine. Loss models developed by Hacker and Okapuu are applied for predicting the performance of turbine. Pressure loss generated through a turbine is converted to the thermal efficiency, and thermal and gas properties are calculated within a turbine passage. Total-to-total efficiency, total-to-static efficiency, static temperature at the exit of turbine, output power, flow coefficient, blade loading coefficient, and expansion ratio are predicted with changing the amount of injected steam and the rotational speed. The 74 kW class gas turbine developed at KIMM is chosen for performance analysis. The 74 kW class turbine consists of 1 stage like a current developing gas turbine for fire extinction. Water or steam is injected at the end of combustor, and results show that efficiency and output power are dependent on the temperature of injected water or steam and the static temperature at the exit is decreased.

  • PDF

Analysis of Design and Part Load Performance of Micro Gas Turbine/Organic Rankine Cycle Combined Systems

  • Lee, Joon-Hee;Kim, Tong-Seop
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1502-1513
    • /
    • 2006
  • This study analyzes the design and part load performance of a power generation system combining a micro gas turbine (MGT) and an organic Rankine cycle (ORC). Design performances of cycles adopting several different organic fluids are analyzed and compared with performance of the steam based cycle. All of the organic fluids recover greater MGT exhaust heat than the steam cycle (much lower stack temperature), but their bottoming cycle efficiencies are lower. R123 provides higher combined cycle efficiency than steam does. The efficiencies of the combined cycle with organic fluids are maximized when the turbine exhaust heat of the MGT is fully recovered at the MGT recuperator, whereas the efficiency of the combined cycle with steam shows an almost reverse trend. Since organic fluids have much higher density than steam, they allow more compact systems. The efficiency of the combined cycle, based on a MGT with 30 percent efficiency, can reach almost 40 percent. hlso, the part load operation of the combined system is analyzed. Two representative power control methods are considered and their performances are compared. The variable speed control of the MGT exhibits far better combined cycle part load efficiency than the fuel only control despite slightly lower bottoming cycle performance.

증기조건 향상에 따른 증기터빈 기술동향

  • 나운학
    • 열병합발전
    • /
    • 통권36호
    • /
    • pp.16-21
    • /
    • 2003
  • For many years, T/G Supplier has constructed a number of thermal power plants and researched to improve the performance and the reliability of steam turbine, which are achieved by advances in design and materials technology. In recent, interest is renewed in advance steam condition as means of improving economy of thermal power plant and reducing environmental pollution. Improvements in the maximum power have been driven by the development of advanced rotor and bucket material and longer last stage bucket. Improvements in efficiency have been brought through advance in mechanical efficiency and thermodynamic efficiency. This paper describes a number of new steam path design features introduced to the steam turbine product. And also this paper describes new design technologies' development, new technologies' trend and technologies' development for ultra-super critical steam turbine.

  • PDF