• Title/Summary/Keyword: Steam conversion rate

Search Result 80, Processing Time 0.034 seconds

Production of Hydrogen from Methane by 3phase AC GlidArc Plasma (3상 교류 부채꼴 방전을 이용한 메탄으로부터 수소 생산)

  • Chun, Young-Nam;Kim, Seong-Cheon;Lim, Mun-Seup
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2232-2237
    • /
    • 2007
  • Steam reforming and catalytic reforming of $CH_4$ conversion to produce synthesis gas require both high temperatures and high pressure. Non-thermal plasma is considered to be a promising technology for the hydrogen rich gas production from methane. In this study, three phase AC GlidArc plasma system was employed to investigate the effects of gas composition, gas flow rate, catalyst reactor temperature and applied electric power on the $CH_4$ and $H_2$ yield and the product distribution. The studied system consisted of three electrode and it connected AC generate power system different voltages. In this study, air was used for the partial oxidation of methane. The results showed that increasing gas flow rate, catalyst reactor temperature, or electric power enhanced $CH_4$ conversion and $H_2$ concentration. The reference conditions were found at a $O_2$/C molar ratio of 0.45, a feed flow rate of 4.9 ${\ell}$/min, and input power of 1kW for the maximum conversions of $CH_4$ with a high selectivity of $H_2$ and a low reactor energy density.

  • PDF

Numerical Analysis of Heat Transfer and Fuel Conversion for MCFC Preconverter (MCFC 프리컨버터 촉매의 열전도특성과 연료전환율 해석)

  • Byun, Do-Hyun;Sohn, Chang-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.425-430
    • /
    • 2012
  • In this study, a preconverter of an MCFC for an emergency electric power supplier is numerically simulated to increase the hydrogen production from natural gas (methane). A commercial code is used to simulate a porous catalyst with a user subroutine to model three dominant chemical reactions-steam reforming, water-gas shift, and direct steam reforming. To achieve a fuel conversion rate of 10% in the preconverter, the required external heat flux is supplied from the outer wall of the preconverter. The calculated results show that the temperature distribution and chemical reaction are extremely nonuniform near the wall of the preconverter. These phenomena can be explained by the low heat conductivity of the porous catalyst and the endothermic reforming reaction. The calculated results indicate that the use of a compact-size preconverter makes the chemical reaction more uniform and provides many advantages for catalyst maintenance.

Synthesis of Tetrafluoroethylene from the Pyrolysis of Chlorodifluoromethane in the Presence of Steam (과열 수증기를 이용한 클로로디플루오르메탄 열분해 반응에 의한 테트라플루오르에틸렌의 합성)

  • Han, Myungwan;Kim, Beom-Sik;Kim, Chul-Ung;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.190-195
    • /
    • 1999
  • The thermal pyrolysis of chlorodifluoromethane (R22) for producting tetrafluoroethylene (TFE) has been studied using the tubular reactor designed by the authors. The reaction temperature over $600{\sim}850^{\circ}C$, residence time over 0.005~0.6 sec, and steam/R22 ratio 3 to 30 were varied through experiments to analyze the effect of these variables on the conversion of R22 and selectivity for TFE. We have provided the guidelines for the optimal operation and design for the pyrolysis reactor. With increasing the dilution ratio, not only the conversion of R22 but also the selectivity for TFE increase. The optimum range of reaction temperature was $700{\sim}750^{\circ}C$ and the residence time 0.07~0.1 sec. In the kinetic study, first order rate equation was fitted well with the experimental data. This indicates that the main reaction step is a $CF_2$ generation from R22 pyrolysis. The range of activation energy for the rate constant was obtained 44.7~48 kcal/mol.

  • PDF

Numerical Analysis of a Gliding Arc Plasma Scrubber for CO2 Conversion (이산화탄소 전환을 위한 글라이딩 아크 플라즈마 스크러버의 수치계산)

  • Kim, Seong Cheon;Chun, Young Nam
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.339-349
    • /
    • 2014
  • $CO_2$ emission has been gradually increased due to rising fossil fuel use. A gliding arc plasma scrubber (GAPS) was proposed to destruct $CO_2$. For optimum design of GAPS, a CFD analysis has been conducted in different configuration for the system. The parameters considered included gas injection velocity at the nozzle and gas flow rate to gap between electrodes. The reactor configuration affected velocity fields which caused changes in the mixture fraction and the retention time. The mixing effect of $CO_2$ and supplied gas ($CH_4$ and steam) was enhanced by installing a orifice baffle. This revealed that the orifice baffle is effective in $CO_2$ conversion by positioning the reactants in the gas into the center of plasma discharge.

A study on γ-Al2O3 Catalyst for N2O Decomposition (N2O 분해를 위한 γ-Al2O3 촉매에 관한 연구)

  • Eun-Han Lee;Tae-Woo Kim;Segi Byun;Doo-Won Seo;Hyo-Jung Hwang;Jueun Baek;Eui-Soon Jeong;Hansung Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Direct catalytic decomposition is a promising method for controlling the emission of nitrous oxide (N2O) from the semiconductor and display industries. In this study, a γ-Al2O3 catalyst was developed to reduce N2O emissions by a catalytic decomposition reaction. The γ-Al2O3 catalyst was prepared by an extrusion method using boehmite powder, and a N2O decomposition test was performed using a catalyst reactor that was approximately 25.4 mm (1 in) in diameter packed with approximately 5 mm of catalysts. The N2O decomposition tests were carried out with approximately 1% N2O at 550 to 750 ℃, an ambient pressure, and a GHSV=1800-2000 h-1. To confirm the N2O decomposition properties and the effect of O2 and steam on the N2O decomposition, nitrogen, air, and air and steam were used as atmospheric gases. The catalytic decomposition tests showed that the 1% N2O had almost completely disappeared at 700 ℃ in an N2 atmosphere. However, air and steam decreased the conversion rate drastically. The long term stability test carried out under an N2 atmosphere at 700 ℃ for 350 h showed that the N2O conversion rate remained very stable, confirming no catalytic activity changes. From the results of the N2O decomposition tests and long-term stability test, it is expected that the prepared γ-Al2O3 catalyst can be used to reduce N2O emissions from several industries including the semiconductor, display, and nitric acid manufacturing industry.

A Study on Optimal Operation of Methanol Steam Reforming System for Hydrogen Fuel Cell Propulsion Ships (수소 연료전지 추진 선박 적용을 위한 메탄올 수증기 개질 시스템 최적 운전점 연구)

  • HEEJOO CHO;SOOBIN HYEON;SEUNGKYO JUNG;HYUNJIN JI;JUNGHO CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.6
    • /
    • pp.733-742
    • /
    • 2022
  • Hydrogen fuel cell propulsion ships are emerging to respond to the recently strengthened carbon emission regulations in the international shipping sector. Methanol can be stored in a liquid state at normal pressure and temperature, and has the advantage of lower reforming temperature compared to other fuels. In this study, the optimal operating point of the methanol steam reforming system was derived by changing the Steam Carbon Ratio (SCR) from 0.10 to 3.00. Results showed that In terms of methanol conversion rate and hydrogen yield, the larger the SCR is the better, but in terms of system efficiency, it is most advantageous to operate at SCR 0.70 in Pressure Swing Adsorption (PSA) mode and SCR 0.80 in Pd membrane mode. Through this study, it was found that the optimal SCR in the reformer and the entire system including the reformer may be different, which indicates that the optimum operating point may be different depending on the change of the system configuration.

Steam Gasification of Coal and Petroleum Coke in a Thermobalance and a Fluidized Bed Reactor (열천칭과 유동층반응기에서 석탄과 Petroleum Coke의 수증기 가스화반응)

  • Ji, Keunho;Song, Byungho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1015-1020
    • /
    • 2012
  • Lignite of low rank coal and petroleum coke of high sulfur content can be high potential energy sources for coal gasification process because of their plentiful supply. The steam gasification of lignite, anthracite, and pet coke has been carried out in both an atmospheric thermobalance reactor and a lab-scale fludized bed reactor (0.02 m i.d. ${\times}$ 0.6 m height). The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (0.15~0.95 atm) on the gasification rate and on the heating value of product gas have been investigated. The modified volumetric reaction model was applied to the experimental data to describe the behavior of carbon conversion, and to evaluate kinetic parameters of char gasification. The results shows that higher temperature bring more hydrogen in the product syngas, and thus increased gas heating value. The feed rate of steam is needed to be optimized because an excess steam input would lower the gasification temperature which results in a degradation of fuel quality. The rank of calorific value of the product gas was anthracite > lignite > pet coke. Their obtained calorific value at $900^{\circ}C$ with 95% steam feed were 10.0 > 6.9 > 5.7 $MJ/m^3$. This study indicates that lignite and pet coke has a potential in fuel gas production.

A Study on Characteristics of Wood Pellet Gasification in Two Stage Gasifier (Two Stage Gasifier에서의 우드펠릿 가스화 특성 연구)

  • Lee, Moon-Won;Choi, Sun-Yong;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.240-245
    • /
    • 2010
  • In this study, characteristics of wood pellet gasification was studied using a Two Stage Gasifier which is consisted of pyrolysis reactor and ultra high temperature reformer. The average yields of $H_2$, $CH_4$, CO, $CO_2$ were 16.7, 11.3, 37.2, 26.6 L/mim, conversion rate from biomass to gas was 65% in pyrolysis reactor and gas yields in reformer were 55.4, 0.8, 120.8, 56.8 L/mim, respectively. The hydrogen flow rate from reformer is obtained 360.1 L/hr. The most of $CH_4$ was decomposed from 12.3 to 0.3 vol.% while $H_2$ is from 18.2 to 23.7 vol.% in reformer by methane dry reforming, Boudouard reaction, oxidation and/or steam reforming. The amount of $H_2O$ generated by hydration reaction from reformer was 1111.8 g, its accelerated conversion of $CH_4$ to other products. The conversion rate from $CH_4$ to other Compounds was 97.2%. Cold gas efficiency was 53.2%.

Thermodynamic Equilibrium and Efficiency of Ethylene Glycol Steam Reforming for Hydrogen Production (에틸렌글리콜의 수증기 개질반응을 이용한 수소제조에 대한 열역학적 평형 및 효율 분석)

  • Kim, Kyoung-Suk;Park, Chan-Hyun;Jun, Jin-Woo;Cho, Sung-Yul;Lee, Yong-Kul
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.243-247
    • /
    • 2009
  • This study is purposed to analyze thermodynamic properties on the hydrogen production by ethylene glycol steam reforming. Various reaction conditions of temperatures(300~1,600 K), feed compositions(steam/carbon= 0.5~4.5), and pressures(1~30 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 500 K. An increase of steam to carbon ratio(S/C) in feed mixture over 1.0 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.

Development of a Gliding Arc Plasma Reforming System to Produce Hydrogen Form Biogas (바이오가스 개질을 위한 글라이딩 아크 플라즈마 개질 시스템 개발)

  • Kim, Seong Cheon;Yang, Yoon Cheol;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.423-429
    • /
    • 2009
  • The purpose of this study is to investigate the optimal condition for the hydrogen-rich gas production and the CO removal by reforming of gliding arc plasma reforming system using biogas. The parametric screening studies were carried out according to changes of steam feed amount, catalyst bed temperature in water gas reactor and catalyst bed temperature, input air flow rate in preferential oxidation reactor. The standard condition is as follows. The steam/carbon ratio, catalyst bed temperature, total gas flow rate, input electric power and biogas composition rate ($CH_4$ : $CO_2$) were fixed 3, $700^{\circ}C$, 16 L/min, 2.4 kW and 6 : 4, respectively. The results are as follow, HTS optimum operating conditions were S/C ratio of 3 and reactor temperature of $500^{\circ}C$. LTS were S/C ratio of 2.9 and temperature of $300^{\circ}C$. Also, PROX I optimum conditions were input air flow rate of 300 mL/min and reactor temperature of $190^{\circ}C$. PROX II were 200 mL/min and $190^{\circ}C$ respectively. After having passed through each reactor, the results were as follows: 55% of $H_{2}$ yield, 0% of CO selectivity, 99% of $CH_4$ conversion rate, 27% of $CO_2$ conversion rate, respectively.