• 제목/요약/키워드: Steam Pressure

검색결과 900건 처리시간 0.028초

상용 프로그램을 이용한 열병합 발전용 고압(HP)-중압(IP) 증기터빈 모델의 성능해석에 대한 연구 (A Study on the Performance Analysis of the High Pressure - Intermediate Pressure Steam Turbine Model for Co-generation Plants using Commercial Programs)

  • 원종필;오승태;오정모
    • 해양환경안전학회지
    • /
    • 제29권4호
    • /
    • pp.395-406
    • /
    • 2023
  • 우리나라 열병합 발전소에서 운영되고 있는 최신 증기터빈의 출력과 효율 향상을 위한 첫 번째 기술적인 진보는 고온, 고압의 증기를 사용할 수 있는 소재 개발의 진척이라고 할 수 있다. 소재의 발전과 더불어 증기터빈의 내부효율 향상을 위한 설계적 노력의 결실로 높은 효율의 증기터빈이 제작되었다. 오랜 기간 운전 중인 증기터빈의 내부효율은 기계적 수명의 한계로 점차 손실이 발생하고 효율과 출력이 떨어지게 된다. 이러한 이유로 본 연구에서는 상용프로그램을 이용하여 열병합 발전소용 고압(HP)-중압(IP) 증기터빈의 증기유로 성능해석을 수행할 수 있는 모델을 개발하고 성능계산 방법을 제시하고자 한다. 증기터빈의 복잡한 성능계산방식으로 인해 증기터빈 실무자들에게 실질적으로 유용한 참고문헌이 될 수 있도록 주요 변수들을 제시하였다. 또한 증기터빈 성능계산에 필요한 열정산도 분석과 증기터빈 성능계산 결과의 적합성을 성능시험 결과와 비교 확인하였다.

증기터빈 1단 노즐의 조속현상이 터빈성능에 미치는 영향 (Effects of flow variation in the first stage nozzle on the performance of a partial arc admission in a steam turbine)

  • 윤인수;이태구;문승재;이재헌
    • 플랜트 저널
    • /
    • 제4권3호
    • /
    • pp.60-65
    • /
    • 2008
  • Power plant industry has been developed at high-capacity, high-technology, and innovation. Steam turbine became the most useful equipment that dominate more than 50% of all the world electricity production. And developed new materials of the turbine blade and extended length of the turbine last blade brought reform in steam turbine performance upgrade. In this paper, when do partial load driving in high-capacity steam turbine, optimum driving method found whether there is something. In operating steam turbine, there is a lot of loss from secondary wake and throttle of the 1st stage nozzle by the biggest leading factor that load fluctuation affects in high-pressure steam turbine performance. Effect of internal efficiency by 1 stage nozzle is the biggest here, but here fluid flow and flow analysis were not yet examined closely definitely. So, Analyzed design data and acceptance performance test result to applying subcritical pressure drum type 560 MW, supercritical-pressure once through type 500 MW, and 800 MW steam turbines actually. In conclusion, at partial load driving, partial arc admission(PAA) is more efficient than full arc admission(FAA) efficiency. This is judged by because increase being proportional with gross energy of stream that is pressure - available energy if pressure of stream that is flowed in to the turbine increases, available energy becomes maximum and turbine efficiency improves. Therefore, turbine performance is that preview that first stage performance fell if decline is serious in partial load because first stage performance changes according to load.

  • PDF

저압(低壓) 폭쇄처리(爆碎處理)에 의한 목재주성분(木材主成分)의 분리(分離)·정제(精製) 및 이용(利用)(I) -저압폭쇄처리(低壓爆碎處理) 및 목재주성분(木材主成分)의 분리(分離)- (The Separation, Purification and Utilization of Wood Main Components by Steam Explosion in Low Pressure (I) -Low Pressure Steaming Explosion and Separation of Wood Main Components-)

  • 엄찬호;엄태진;이종윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제21권3호
    • /
    • pp.30-36
    • /
    • 1993
  • Wood chips of oak (Quercus mongolica) and larch (Larix leptolepis) were treated with a relatively low pressure steam(10~20 kg/$cm^2$) for 10~20 min (first-stage),and then increased pressure up to 30kg/$cm^2$ for 30 second (second-stage), and steam pressure was released intentionally to air. Main components of exploded wood were separated with 1% NaOH and hot water-methanol. In this work, the more effective low pressure explosion condition and separation method of wood main component were investigated. The results can be summarized as follows; 1. The yields of exploded wood were generally decreased with increasing steam pressure and reaction time. 2. The proper condition of steam explosion in low pressure for the separation of wood main components was 15kg/$cm^2$-10 min, in oak wood and 20kg/$cm^2$-10 min., then 30kg/$cm^2$-0.5 min, in larch wood. 3. The 23% of elude hemicellulose was obtained from the exploded oak wood which was treated with optimal condition. 4. In the case of hot water-methanol extraction, the ratio of delignification was 14~23% in the exploded larch wood and 42~55% in the exploded oak wood. 5. The methanol was more effective than 1% sodium hydroxide solution for extraction of lignin from exploded wood.

  • PDF

소듐냉각고속로 원형로 소듐-물 반응 압력완화계통 성능 해석 연구 (Investigation on Performance Analysis of Sodium-Water Reaction Pressure Relief System of Prototype Generation-IV Sodium-Cooled Fast Reactor)

  • 박선희;한지웅
    • Korean Chemical Engineering Research
    • /
    • 제57권1호
    • /
    • pp.28-41
    • /
    • 2019
  • 본 연구는 소듐냉각고속로 원형로 소듐-물 반응 압력완화계통의 성능 해석을 목적으로 한다. 증기발생기의 전열관 파단에 의한 대규모 물 누출 사고 발생 시, 증기발생기 전열관 내측의 물을 급수덤프탱크로 배출하고 전열관 외측의 소듐 및 반응생성물을 소듐덤프탱크로 배출 할 때 유체의 거동을 해석하여 계통 설계요건의 적절성을 평가하였다. 증기발생기 쉘 측의 액체와 중간열전달계통 내 소듐이 모두 배출되는데 소요되는 시간은 약 50초이고, 증기발생기 전열관 측의 급수가 모두 배출되는데 소요되는 시간은 약 2.5초로 계산되었다. 증기발생기와 중간열전달계통 내 유체가 덤프탱크로 배출되는 동안 전열관 측의 압력은 쉘 측의 압력보다 높게 유지되어 쉘 측의 소듐이 전열관 측으로 역류하는 현상은 없는 것으로 해석되었다. 본 연구의 결과는 SFR 원형로 소듐-물반응압력완화계통의 성능 평가에 대한 기초자료로 활용할 예정이다.

터빈 밸브시험 중 충동실 압력제어에 의한 발전기 출력변동 최소화 (The Minimization of Generator Output Variations by Impulse Chamber Pressure Control during Turbine Valve Test)

  • 최인규;김종안;박두용;우주희;신재호
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.152-159
    • /
    • 2010
  • This paper describes the actual application of a feedback control loop as a means for minimizing turbine impulse chamber pressure variation during the turbine steam valve tests at a 1,000 MW nuclear power plant. The chamber pressure control loop was implemented in the new digital control system which was installed as a replacement for the old analog type control system. There has been about 40MW of the generator output change during the steam valve tests, especially the high pressure governing valve tests, because the old control system had not the impulse chamber pressure control so the operators had to compensate steam flow drop manually. The process of each valve test consists of a closing process and an reopening process and the operators can make sure that the valves are in their sound conditions by checking the valves movement. The control algorithm described in this paper contributed to keep the change in megawatt only to 6MW during the steam valve tests. Thereby, the disturbance to reactor control was reduced, and the overall plant control system's stability was greatly improved as well.

급수가열기 동체 감육 현상 규명을 위한 유동해석 연구 (A Study on the Fluid Mixing Analysis for Proving Shell Wall Thinning of a Feedwater Heater)

  • 김경훈;황경모;김상녕
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.24-30
    • /
    • 2004
  • Feedwater flowing tube side of number 5 high pressure feedwatrr heaters was heated by extracting steam from high pressure turbine and draining water from moisture separators and number 6 high pressure feedwater heaters and supplied into steam generators. Because the extracting steam from the high pressure turbine is two phase fluid of high temperature, high pressure, and high speed and flows to inverse direction after impinging to impingement baffle. the shell wall of the number 5 high pressure feedwater heater may be affected by flow accelerated corrosion. On May 14, 1999, Point Beach Nuclear Plant (PBNP) with operating at full power experienced a steam leak from rupture of shell side of number 4B feedwater heater. Also, d domestic nuclear power plant experienced a severe wall thinning of shell side of number 5A and 5B feedwater heaters. This paper describes the fluid mixing analysis study using PHOENICS code in order to get at the root of the shell wall thinning of the feedwater heaters. The sections included in the fluid mixing analysis model are around the number 5h feedwater heater shell including the extracting pipeline. To identify the relation between the local velocities and wall thinning. the local velocities according to the analysis results were compared with the distribution of the shell wall thickness by ultrasonic test.

  • PDF

스팀터빈 Exhaust System에서 LP터빈과 Exhaust Hood 사이의 간섭에 대한 수치해석적 연구 (Numerical investigation of LP turbine-exhaust hood interaction in the steam turbine exhaust system)

  • 임지현;주원구;김영상;임홍식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.291-294
    • /
    • 2006
  • Exhaust system of steam turbines consists of an annular diffuser and a collector and connects the last stage turbine and the condenser. The system is used to transfer the turbine leaving kinetic energy to potential energy while guiding the flow from turbine exit plane to the downstream condenser. In the steam turbine exhaust system, distorted pressure profile is arisen by the nonaxisymmetric collector structure at the diffuser outlet, and this distorted pressure is propagated to the last stage LP turbine exit plane through the diffuser, then the last stage LP turbine experiences asymmetric back pressure. It is known that the pressure recovery performance of diffuser is strongly influenced by diffuser inflow condition. In this study, the effect of exhaust system due to the changing of inlet flow condition is observed by using CFD, and the interaction of last stage LP turbine and exhaust system is investigated by using actuator disk model as modeling of turbine blade row of exhaust hood inlet.

  • PDF

증기응축용 직접접촉식 열교환기의 냉각수 유량과 내부압 변화에 따른 열전달 특성연구(LNG 기화기와의 조합목적) (A Study on a Heat Transfer Characteristics of Direct Contact Heat Exchanger for Steam Condensation According to Various Cooling Water Flow and Internal Pressure(The Purpose of Combination with LNG Evaporator))

  • 이병철;한승탁;김종보
    • 설비공학논문집
    • /
    • 제3권3호
    • /
    • pp.153-160
    • /
    • 1991
  • Heat transfer characteristics of a direct contact heat exchanger utilizing sieve trays and spray nozzles for steam condensation for the purpose of combining with a LNG evaporator have been investigated with various cooling water flow rates and different vacuum pressures within the heat exchanger for the purpose of steam condensation. Temperature profiles and the volumetric overall heat transfer coefficients in a direct contact heat exchanger have been obtained for comparisons. The results show that the temperature differences between cooling water and steam along the direct contact heat exchanger height are rapidly decreasing and the volumetric overall heat transfer coefficients of the exchanger improves greatly as the inside vacuum pressure increases. The values of the overall heat transfer coefficients at P=-680mmHg have been increased significantly compared with at atmospheric pressure. At given pressure conditions, it is found that the values of average volumetric overall heat transfer coefficients for the sieve tray are found to be approximately 10% higher than those of the spray nozzle.

  • PDF

Spontaneous Steam Explosions Observed In The Fuel Coolant Interaction Experiments Using Reactor Materials

  • Jinho Song;Park, Ikkyu;Yongseung Sin;Kim, Jonghwan;Seongwan Hong;Byungtae Min;Kim, Heedong
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.344-357
    • /
    • 2002
  • The present paper reports spontaneous steam explosions observed in fuel coolant interaction experiments using prototypic reactor materials. Pure ZrO$_2$ and a mixture of UO$_2$ and ZrO$_2$ are used. A high temperature molten material in the form of a jet is poured into a subcooled water pool located in a pressure vessel. An induction skull melting technique is used for the melting of the reactor material. In both tests using pure ZrO$_2$ and a mixture of UO$_2$ and ZrO$_2$, either a quenching or a spontaneous steam explosion was observed. The morphology of debris and pressure profile clearly indicate the differences between the qunching cases and explosion cases. The dynamic pressure. dynamic impulse, water temperature, melt temperature, and static pressure Inside the containment chamber were measured . As the spontaneous steam explosion for the reactor material is firstly observed in the present experiments, the results of present experiments could be a siginificant step forward the understanding the explosion of the reactor material.

증기발생기 전열관 와전류검사용 국내 개발 보빈탐촉자 적용성 분석 (Determination of Availability of Domestic Developed Bobbin Probe for Steam Generator Tube Inspection)

  • 김인철;주경문;문용식
    • 한국압력기기공학회 논문집
    • /
    • 제7권4호
    • /
    • pp.19-25
    • /
    • 2011
  • Steam Generator(SG) tube is an important component of Nuclear Power Plant(NPP), which is the pressure boundary between the primary and secondary systems. The integrity of SG tube has been confirmed by the eddy current test every outage. The eddy current technique adopting bobbin probe is currently the primary technique for the steam generator tubing integrity assesment. The bobbin probe is one of the essential components which consist of the whole ECT examination system and provides us a decisive data for the evaluation of tube integrity. Until now, all of the ECT bobbin probes in Korea which is necessary to carry out inspection are imported from overseas. However, KHNP has recently developed the bobbin probe design technology and transferred it to domestic manufacturers to fabricate the probes. This study has been conducted to establish technical requirements applicable to the steam generator tube inspection using the bobbin probes fabricated by the domestic manufactures. The results have been compared with the results obtained by using foreign probe to identify the availability to the steam generator tube inspection. As a result, it is confirmed that the domestic bobbin probe is generally applicable to SG tube inspection in the NPPs.