• Title/Summary/Keyword: Steam Generators Tubes

Search Result 50, Processing Time 0.024 seconds

Development of a Safety Assessment System on Aging Management in Existing CANDU Steam Generators (가압중수로 증기발생기의 경년열화 관리를 위한 안전성 평가 시스템 개발)

  • Shin, So Eun;Lee, Jeong Hun;Park, Tong Kyu;Jung, Jong Yeob
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.49-56
    • /
    • 2014
  • Since steam generator (SG) tubes are located in the boundary between the primary and secondary systems of nuclear power plant (NPP), the SG is one of the most important components in the aspects of the safety of NPP. The magnetite ($Fe_30_4$) deposition, so-called fouling, is generally known as a major aging mechanism of CANDU SGs, and this aging mechanism makes the heat transfer efficiency between the primary and secondary systems of NPP reduced. Therefore, the development of SG safety assessment system which can evaluate the effect of the SG aging degradation mechanism should be needed for safety of NPP. In this study, through the suggestion of the guideline for SG safety assessment, it is possible to strengthen the basic of establishing the effective SG aging management technique. The SG safety assessment is carried out by CATHENA(Canadian Algorithm for THErmalhydraulic Network Analysis). It is possible to determine the integrity of SGs by identifying the main safety parameters which can be changed by the aging degradation of CANDU SGs.

Motion planning of a steam generator mobile tube-inspection robot

  • Xu, Biying;Li, Ge;Zhang, Kuan;Cai, Hegao;Zhao, Jie;Fan, Jizhuang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1374-1381
    • /
    • 2022
  • Under the influence of nuclear radiation, the reliability of steam generators (SGs) is an important factor in the efficiency and safety of nuclear power plant (NPP) reactors. Motion planning that remotely manipulates an SG mobile tube-inspection robot to inspect SG heat transfer tubes is the mainstream trend of NPP robot development. To achieve motion planning, conditional traversal is usually used for base position optimization, and then the A* algorithm is used for path planning. However, the proposed approach requires considerable processing time and has a single expansion during path planning and plan paths with many turns, which decreases the working speed of the robot. Therefore, to reduce the calculation time and improve the efficiency of motion planning, modifications such as the matrix method, improved parent node, turning cost, and improved expanded node were proposed in this study. We also present a comprehensive evaluation index to evaluate the performance of the improved algorithm. We validated the efficiency of the proposed method by planning on a tube sheet with square-type tube arrays and experimenting with Model SG.

RELAP5 Analysis of the Loss-of-RHR Accident during the Mid-Loop Operation of Yonggwang Nuclear Units 3/4

  • J. J. Jeong;Kim, W. S.;Kim, K. D.;W. P. Chang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.403-410
    • /
    • 1995
  • A loss of the residual heat removal (RHR) accident during mid-loop operation of Yong-gwang Nuclear Units 3/4 was analyzed using the RELAP5/MOD3.1.2 code. In this work the following assumptions are used; (i) initially the reactor coolant system (RCS) above the hot leg center line is filled with nitrogen gas, (ii) two 3/4-inch diameter vent valves on the reactor vessel head and the top of pressurizer in the reactor coolant system are always open, and a level indicator is connected to the RMR suction line, (iii) the two steam generators are in wet layup status and the steam generator atmospheric dump valve assemblies are removed so that the secondary side pressure remains at nearly atmospheric condition throughout the accident, and (iv) the loss of RHR is presumed to occur at 48 hours after reactor shutdown. Findings from the RELAP5 calculations are (i) the core boiling begins at ∼5 min, (ii) the peak RCS pressure is ∼3.0 bar, which implies a possibility of temporary seal break, (iii) ∼94 % of the decay heat is removed by reflux condensation in the steam generator U-tubes in spite of the presence of noncondensable gas, (iv) the core uncovery time is evaluated to be 7.2 hours. Significant mass errors were observed in the calculations.

  • PDF

A Study on Fretting-Wear Behavior of Inconel 690 due to Surrounding Temperature (주위 온도에 따른 Inconel690의 마멸 거동에 관한 연구)

  • 임민규;박동신;김대정;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.296-303
    • /
    • 2001
  • In nuclear power steam generators, high flow rates can induce vibration of the tubes resulting in fretting wear damage due to contacts between the tubes and their supports. In this paper the fretting wear tests and the sliding wear tests were performed using the steam generator tube materials of Inconel 690 against STS 304. Sliding tests with the pin-on-disk type tribometer were done under various applied loads and sliding speeds at air and water environment. Fretting tests were done under various vibrating amplitudes, applied normal loads and various temperatures. From the results of sliding and fretting wear tests, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and often drastically different wear rates can occur. At room temperature, the wear coefficient K of Inconel 690 is 7.57${\times}$10$\^$13/Pa$\^$1/ in air and it is 1.93${\times}$10$\^$13/Pa$\^$1/ in water. At room temperature, it is found that the wear volume in air is more than in water. In water, the wear coefficient K at 50$^{\circ}C$ and 80$^{\circ}C$ is 4.35${\times}$10$\^$-13/Pa$^1$ and 5.81${\times}$10$\^$-13/Pa$^1$ respectively, Therefore, it is found that the wear volume extremely increases by increasing on temperature in water. This study shows that the dissolved oxygen with temperature increment increases and the wear due to fluidity is severe.

  • PDF

Evaluation of Nondestructive Evaluation Size Measurement for Integrity Assessment of Axial Outside Diameter Stress Corrosion Cracking in Steam Generator Tubes (증기발생기 전열관 외면 축균열 건전성 평가를 위한 비파괴검사 크기 측정 평가)

  • Joo, Kyung-Mun;Hong, Jun-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy600 HTMA tubes has been increasing. As a result, SGs with Alloy600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and abilty of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

Experimental Study on Fretting Wear of Inconel 690 Under High Temperatures and Pressures (고온 고압 환경에서 인코넬 690 재료의 프레팅 마모 특성에 관한 실험적 연구)

  • Lee, Coon-Yeol;Lee, Ju-Suck;Bae, Joon-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.637-644
    • /
    • 2012
  • In a nuclear power plant, fretting wear due to impact motion between U-tubes and support structures located in steam generators can cause serious problems. In order to guarantee the reliability of the steam generator, the damage due to fretting wear should be thoroughly investigated. The purpose of this study is to elucidate the fretting wear mechanism qualitatively and quantitatively. Hence, fretting wear simulation is performed for the environments to which the actual steam generators in nuclear power plants are exposed. Initial experimental results are obtained for various experimental parameters, and the effect of the work rate and temperature on fretting wear is evaluated. In water, the wear coefficients for $90^{\circ}C$, $200^{\circ}C$, and $340^{\circ}C$ are found to be $9.051{\times}10^{-16}\;Pa^{-1}$, $3.009{\times}10^{-15}\;Pa^{-1}$, and $2.235{\times}10^{-15}\;Pa^{-1}$, respectively. It is also found that the wear coefficient at room temperature is larger than that at low temperature in water because of the dynamic viscosity of water.

Analysis on Hypothetical Multiple Events of mSGTR and SBO at CANDU-6 Plants Using MARS-KS Code (중수로 원전 가상의 mSGTR과 SBO 다중 사건에 대한 MARS-KS 코드 분석)

  • Seon Oh YU;Kyung Won LEE;Kyung Lok BAEK;Manwoong KIM
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.17 no.1
    • /
    • pp.18-27
    • /
    • 2021
  • This study aims to develop an improved evaluation technology for assessing CANDU-6 safety. For this purpose, the multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout (SBO) in a CANDU-6 plant was selected as a hypothetical event scenario and the analysis model to evaluate the plant responses was envisioned into the MARS-KS input model. The model includes logic models for controlling the pressure and inventory of the primary heat transport system (PHTS) decreasing due to the u-tubes' rupture, as well as the main features of PHTS with a simplified model for the horizontal fuel channels, the secondary heat transport system including the shell side of steam generators, feedwater and main steam line, and moderator system. A steady state condition was successfully achieved to confirm the stable convergence of the key parameters. Until the turbine trip, the fuel channels were adequately cooled by forced circulation of coolant and supply of main feedwater. However, due to the continuous reduction of PHTS pressure and inventory, the reactor and turbine were shut down and the thermal-hydraulic behaviors between intact and broken loops got asymmetric. Furthermore, as the conditions of low-flow coolant and high void fraction in the broken loop persisted, leading to degradation of decay heat removal, it was evaluated that the peak cladding temperature (PCT) exceeded the limit criteria for ensuring nuclear fuel integrity. This study is expected to provide the technical bases to the accident management strategy for transient conditions with multiple events.

Comparative Study Between Geopolymer and Cement Waste Forms for Solidification of Corrosive Sludge

  • Lee, Juhyeok;Kim, Byoungkwan;Kang, Jaehyuk;Kang, Jaeeun;Kim, Won-Seok;Um, Wooyong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.4
    • /
    • pp.465-479
    • /
    • 2020
  • Two waste forms, namely cement and geopolymer, were investigated and tested in this study to solidify the corrosive sludge generated from the surface and precipitates of the tubes of steam generators in nuclear power plants. The compressive strength of the cement waste form cured for 28 days was inversely proportional to waste loading (24.4 MPa for 0wt% to 2.7 MPa for 60wt%). The corrosive sludge absorbed the free water in the hydration reaction to decrease the cementation reaction. When the corrosive sludge waste loading increased to 60wt%, the cement waste form showed decreased compressive strength (2.7 MPa), which did not satisfy the acceptance criteria of the repository (3.45 MPa). Meanwhile, the compressive strength of the geopolymer waste form cured for 7 days was proportional to waste loading (23.6 MPa for 0wt% to 31.9 MPa for 40wt%). The corrosive sludge absorbed the free water in the geopolymer when the water content decreased, such that a compact geopolymer structure could be obtained. Consequently, the geopolymer waste forms generally showed higher compressive strengths than cement waste forms.

Fluid-Elastic Instability of Tube Bundles in Two-Phase Cross-Flow (2상 횡유동을 받는 튜브군의 유체탄성 불안정성)

  • 김범식;장효환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1948-1966
    • /
    • 1991
  • Two-phase cross-flow exists in many shell-tube heat exchangers such as condensers, reboilers and nuclear steam generators. To avoid problems due to excessive vibration, information on vibration excitation in two-phase cross-flow is required. Fluid-elastic instability is discussed in this paper. Four tube bundle configurations were subjected to increasing flow up to the onset of fluid-elastic instability. The tests were done on bundles with one flexible tube surrounded by rigid tubes. The fluid-elastic instability behavior is different for intermittent flows than for bubbly flows. For bubbly flows, the observed instabilities satisfy the relationship V/fd=K(2.pi..zeta. m/rho. $d^{21}$)$^{0.51}$ in which the minimum instability factor K was found to be 2.3 for bundles of p/d=1.22. The lowest critical velocities for fluid-elastic instability were experienced with parallel-triangular tube bundles. For intermittent flow, the observed instabilities did not follow the forgoing relation-ship. Significantly lower flow velocities were required for instability..

Numerical Study of Turbulent Heat Transfer in Helically Coiled Tubes (나선형 튜브내의 난류 열전달에 대한 수치적 연구)

  • Yoon, Dong-Hyeog;Park, Ju-Yeop;Seul, Kwang-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.783-789
    • /
    • 2012
  • In this study, turbulent flow and heat transfer characteristics in a helically coiled tube have been numerically investigated. Helically coiled tubes are commonly used in heat exchange systems to enhance the heat transfer rate. Accordingly, they have been widely studied experimentally; however, most studies have focused on the pressure drop and heat transfer correlations. The centrifugal force caused by a helical tube increases the wall shear stress and heat transfer rate on the outer side of the helical tube while decreasing those on the inner side of the tube. Therefore, this study quantitatively shows the variation of the local Nusselt number and friction factor along the circumference at the wall of a helical tube by varying the coil diameter and Reynolds number. It is seen that the local heat transfer rate and wall shear stress greatly decrease near the inner side of the tube, which can affect the safety of the tube materials. Moreover, this study verifies the previous experimental correlations for the friction factor and Nusselt number, and it shows that the correlation between the two in a straight tube can be applied to a helical tube. It is expected that the results of this study can be used as important data for the safety evaluation of heat exchangers and steam generators.