• Title/Summary/Keyword: Steam Detection

Search Result 101, Processing Time 0.025 seconds

Changes in the Contents of Carotenoids and Cis/Trans β-Carotenes of Fresh and Cooked Spinach in Foodservice Operations (단체급식에서 시금치의 조리방법에 따른 Carotenoids 및 Cis/Trans β-Carotene 함량의 변화)

  • Lim, Yaung-Iee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.1
    • /
    • pp.117-123
    • /
    • 2007
  • HPLC quantifications of fresh and cooked (steamed/microwaved) spinach, one of the most frequently consumed vegetables in foodservice operations, were carried out to determine carotenoids compositions. An S-3 $\mu$m C30 stationary phase for reversed-phase columns with diode-array detection was used to separate and quantify geometric isomers of provitamin A carotenoids in the fresh and cooked spinach. The carotenoids in fresh spinach were identified and quantified: Lutein (63.0%), $\beta$-carotene isomers (all-trans 29.6%, 9-cis 3.2%, 13-cis 1.8%, $\alpha$-carotene 0.4%, zeaxanthin 2.1%) and cryptoxanthin. Cryptoxanthin, detected in a trace amount in HPLC, was not quantified in this study. Lutein was little affected by cooking methods and frozen conditions. 9-cis and 13-cis-$\beta$-carotene isomers were major types formed during cooking. Cooking (steam/microwave) did not alter carotenoid profiles of the samples, but the amounts of carotenoids quantified were greater than those in the fresh samples. Heat treatment such as steaming increased total carotenoids contents, especially trans-$\beta$-carotene (p<0.05). The carotenoid contents of the frozen spinach increased even after the microwaved treatment (p<0.05). These increases were likely to result from the increased extraction efficiency and inactivation of enzymes capable of carotenoids degrading during the heat treatments.

Noise Generation by Water-Sodium Reaction and its Absorption on Hydrogen Bubbles for KALIMER Steam Generator (칼리머 증기발생기에서 물-소듐 반응에 의한 소음 발생과 수소 기포의 소음 흡수)

  • Kim, Tae-Joon;Yughay, Valeri S.;Hwang, Sung-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1829-1835
    • /
    • 2000
  • The experimental results of sodium-water reaction noise measurement in frequency range $1{/sim}200kHz$ are presented. The experiments of noise generation under the condition of sodium test facility, water leak rate $0.01{\sim}1.2g/s$ and temperature of sodium $250{\sim}500^{\circ}C$, were carried out. From theoretical study it is noted that the noise resonant attenuation on hydrogen bubbles in liquid sodium plays the significant role for leak noise spectra formation. Interaction of leak noise and hydrogen bubbles in sodium being accompanied by thermal, emission and viscosity energy dissipation was studied. Acoustic noise spectra were investigated from point of view of water leak detection in sodium/water steam generator. The results of sodium-water reaction noise absorption on hydrogen bubbles in liquid sodium by temperature $250{\sim}500^{\circ}C$ are presented. The theoretical model of noise absorption using the coefficients of attenuation was developed. From calculation the coefficients of attenuation were estimated.

  • PDF

Development of Steam-Generator UT System and Experimental Verification (증기발생기 전열관 확관부의 초음파 검사장치 및 적용기술개발)

  • Park, Jae-Seok;Hong, Soon-Sin;Park, Chi-Seung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.442-448
    • /
    • 2007
  • The ultrasonic inspection system for the expansion/transition area of steam generator tube was successfully developed. Variety of artificial flaw and real track specimen was tested using the UT system to verify the performance of the system. All artificial flaws of which through-wall depth larger than 10% was clearly detected by UT system. Measurement results of through-wall depth of flaws larger than 20% had good linearity and reproducibility with 3.27 of standard deviation. Results of real crack specimen test suggested that the detection limit of real crack strongly depends on the track morphology. A potential for measurement of PRL(percentage of remaining ligament) was recognized by the real crack specimen test.

Compositional Analysis of Major Saponins and Anti-inflammatory Activitiy of Steam-Processed Platycodi Radix under Pressure

  • Ha, In-Jin;Chung, Ji-Won;Ha, Young-Wan;Shin, Eun-Myoung;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • v.14 no.4
    • /
    • pp.274-280
    • /
    • 2008
  • Platycosides are the saponins in Platycodi Radix and they have several beneficial effects such as antiinflammatory and anti-obesity activities. This study was designed to determine the changes in the saponin composition in Platycodi Radix (platycosides) after being processed under steam and pressure and to investigate the anti-inflammatory effects of their extracts. The change of the platycoside compositions was investigated after 1, 2, 3, 6 and 9h heat processing of Platycodi Radices by using HPLC coupled with an evaporative light scattering detection (ELSD) system. After heat treatment ($125^{\circ}C$, 1, 2, 3, 6 and 9 h), the contents of several platycosides such as platycoside E, platycodin $D_3$, platycodin D, polygalacin D, and platycodin A decreased as the processing time was longer. While the total contents of the saponins decreased, the contents of deapi-forms of deapiplatycoside E, deapi-platycodin $D_3$, and deapi-platycodin D increased relatively. These results indicate that the linkage between apiose and xylose located at C-28 is labile to heat and pressure. The LPS-induced iNOS inhibitory activities of the samples treated for 1 and 2 hours were enhanced and after then, the activities were reduced. These results suggested that heat treatment of the samples affect the content of the total saponins and the saponin content may be the important criteria representing the anti-inflammatory activity.

Study on Energy Efficiency Improvement in Manufacturing Core Processes through Energy Process Innovation (에너지 프로세스 혁신을 통한 제조 핵심 공정의 에너지 효율화 방안 연구)

  • Sang-Joon Cho;Hyun-Mu Lee;Jin-Soo Lee
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.43-48
    • /
    • 2023
  • Globally, there is a collaborative effort to achieve global carbon neutrality in response to climate change. In the case of South Korea, greenhouse gas emissions are rapidly increasing, presenting an urgent situation that requires resolution. In this context, this study developed a thermal energy collection device named a 'steam trap' and created an AI model capable of predicting future electricity usage by collecting energy usage data through steam traps. The average accuracy of electricity usage prediction with this AI model was 96.7%, demonstrating high precision. Consequently, the AI model enables the prediction and management of days with high electricity consumption and identifies which facilities contribute to elevated power usage. Future research aims to optimize energy consumption efficiency through efficient equipment operation using anomaly detection in steam traps and standardizing energy management systems, with the ultimate goal of reducing greenhouse gas emissions.

Capacitor Failure Detection Technique for Microgrid Power Converter (마이크로그리드 전력변환장치용 커패시터 고장 검출 기법)

  • Woo-Hyun Lee;Gyang-Cheol Song;Jun-Jae An;Seong-Mi Park;Sung-Jun Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1117-1125
    • /
    • 2023
  • The DC part of the DC microgrid power conversion system uses capacitors for buffers of charge and discharge energy for smoothing voltage and plays important roles such as high frequency component absorption, power balancing, and voltage ripple reduction. The capacitor uses an aluminum electrolytic capacitor, which has advantages of capacity, low price, and relatively fast charging/discharging characteristics. Aluminum electrolytic capacitors(AEC) have previous advantages, but over time, the capacity of the capacitors decreases due to deterioration and an increase in internal temperature, resulting in a decrease in use efficiency or an accident such as steam extraction due to electrolyte evaporation. It is necessary to take measures to prevent accidents because the failure diagnosis and detection of such capacitors are a very important part of the long-term operation, safety of use, and reliability of the power conversion system because the failure of the capacitor leads to not only a single problem but also a short circuit accident of the power conversion system.

Developing an Early Leakage Detection System for Thermal Power Plant Boiler Tubes by Using Acoustic Emission Technology (음향방출법을 이용한 발전용 보일러 튜브 미세누설 조기 탐지 시스템 개발 및 성능 검증)

  • Lee, Sang Bum;Roh, Seon Man
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.181-187
    • /
    • 2016
  • A thermal power plant has a heat exchanger tube to collect and convert the heat generated from the high temperature and pressure steam to energy, but the tubes are arranged in a complex manner. In the event that a leakage occurs in any of these tubes, the high-pressure steam leaks out and may cause the neighboring tubes to rupture. This leakage can finally stop power generation, and hence there is a dire need to establish a suitable technology capable of detecting tube leaks at an early stage even before it occurs. As shown in this paper, by applying acoustic emission (AE) technology in existing boiler tube leak detection equipment (BTLD), we developed a system that detects these leakages early enough and generates an alarm at an early stage to necessitate action; the developed system works better that the existing system used to detect fine leakages. We verified the usability of the system in a 560MW-class thermal power plant boiler by conducting leak tests by simulating leakages from a variety of hole sizes (ⵁ2, ⵁ5, ⵁ10 mm). Results show that while the existing fine leakage detection system does not detect fine leakages of ⵁ2 mm and ⵁ5 mm, the newly developed system could detect leakages early enough and generate an alarm at an early stage, and it is possible to increase the signal to more than 18 dB.

Automatic Ultrasonic Inspection on Heater Sleeves and J-Groove Welds of Pressurizer (가압기 전열기 슬리브 및 J-Groove 용접부의 자동 초음파검사)

  • Ryu, Sung Woo;Chang, Hee Jun;Kim, Sun Je;Lee, Sang Duck;Sung, Jong Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.20-27
    • /
    • 2010
  • In order to prevent the corrosion of component contacted primary water designed alloy 600 material in the nuclear power plant. But the primary water stress corrosion cracking(PWSCC) of alloy 600 and weld area occurs continuously due to the residual stress. The leakage accident resulted from PWSCC in the drain nozzle of the steam generator of domestic power plants. Heater sleeves of the pressurizer are welded with alloy 600 weld material and therefore exposed to the primary water environment. PWSCC occurred in heater sleeve material and weld area of many foreign power plants. The current issue of domestic nuclear power plants are consequently concentrated to PWSCC of similar material. In order to improve the detection and the sizing of the PWSCC in the welding sleeve of the pressurizer, the automatic UT system and multi-directions probe sets have been developed. The experimental studies have been performed using the mock-up block containing artificial reflectors(ID connected EDM notch) and semi-artificial cracks made from thermal fatigue. The automatic UT System is applied in the detection and the length sizing of the ID/OD on the tube and the J-groove weld area of the artificial reflectors and results of the detection and the sizing are compared respectively. Also, the developed automatic UT system is successfully accomplished to inspect the heater sleeve and the J-groove weld area on the pressurizer for the detection of PWSCC.

  • PDF

Analysis of MRPC Probe Signal According to Defect Size Variation for S/G Tube in Nuclear Power Plant (원전SG세관의 결함크기에 따른 MRPC 프로브의 신호 해석)

  • Kim, Ji-Ho;Song, Ho-Jun;Lim, Keon-Gyu;Lee, Hyang-beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1008-1010
    • /
    • 2005
  • In the examination of steam generator(SG) tube in nuclear power plant, eddy current testing probes play an important role in detecting the defects. Bobbin probe and MRPC probe is usually used for the inspection of SG tube. Bobbin probe is good at high speed inspection, but ability of detection of circumferential defect is very weak. On the contrary MRPC probe, which moves for inspection in the direction of axial and circumferential simultaneously, has very slow inspection speed, but it has excellent detection capability for small cracks, which is hardly detected by bobbin probe. In this paper, for the accurate analysis of experimental ECT signals, construction of MRPC probe signals database according to the variation of defect size is the main purpose. Using 3-D finite element method, ECT signals are analyzed, and signals analysis add according to frequency ingredient. The results, which are analysis and characteristics ion of electromagnetism simulation signals, is databased.

  • PDF

A leak detection and 3D source localization method on a plant piping system by using multiple cameras

  • Kim, Se-Oh;Park, Jae-Seok;Park, Jong Won
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.155-162
    • /
    • 2019
  • To reduce the secondary damage caused by leakage accidents in plant piping systems, a constant surveillance system is necessary. To ensure leaks are promptly addressed, the surveillance system should be able to detect not only the leak itself, but also the location of the leak. Recently, research to develop new methods has been conducted using cameras to detect leakage and to estimate the location of leakage. However, existing methods solely estimate whether a leak exists or not, or only provide two-dimensional coordinates of the leakage location. In this paper, a method using multiple cameras to detect leakage and estimate the three-dimensional coordinates of the leakage location is presented. Leakage is detected by each camera using MADI(Moving Average Differential Image) and histogram analysis. The two-dimensional leakage location is estimated using the detected leakage area. The three-dimensional leakage location is subsequently estimated based on the two-dimensional leakage location. To achieve this, the coordinates (x, z) for the leakage are calculated for a horizontal section (XZ plane) in the monitoring area. Then, the y-coordinate of leakage is calculated using a vertical section from each camera. The method proposed in this paper could accurately estimate the three-dimensional location of a leak using multiple cameras.