• Title/Summary/Keyword: Steady-state creep

Search Result 84, Processing Time 0.019 seconds

Estimation of Monkman-Grant Parameter for Type 316LN and Cr-Mo Stainless Steels (316LN 및 Cr-Mo 스테인리스강의 Monkman-Grant 파라메타 평가)

  • Kim, Woo-Gon;Kim, Sung-Ho;Lee, Kyung-Yong;Ryu, Woo-Seog
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.223-230
    • /
    • 2001
  • The Monkman-Grant (M-G) and its modified parameters were estimated for modified type 316LN and $9{\sim}12Cr-1Mo$ steels with chemical variations. Several sets of creep data were obtained by constant-load creep tests in $550-650^{\circ}C$ ranges. The relation parameters, m, $m^*$, C and $C^*$ were proposed and discussed for two alloy systems. In creep fracture mode, type 316LN steel showed domination of the intergranular fracture caused by growth and coalescence of cavities. On the other hand, the Cr-Mo steel showed transgranular fracture of the ductile type caused from softening at high temperature. In spite of the basic differences in creep fracture modes as well as creep properties, the M-G and its modified relations demonstrated linearity within the $2{\sigma}$ standard deviation. The value of the m parameter of the M-G relation was 0.90 in the 316LN steel and 0.84 in the Cr-Mo steel. The value of the $m^*$ parameter of the modified relation was 0.94 in the 316LN steel and 0.89 in Cr-Mo steel. The modified relation was superior to the M-G relation because the $m^*$ slopes almost overlapped regardless of creep testing conditions and chemical variations to the two alloy systems.

  • PDF

A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition (화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구)

  • O, Se-Gyu;Jeong, Sun-Eok
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.207-207
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson,s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

A Study on the High Temperature Creep Crack Growth Properties for Steam Turbine Rotor Steel under Static and Cyclic Loading Condition (화력 발전용 고압 로터강의 정하중 및 변동하중하의 고온 크립 균열전파 특성에 관한 연구)

  • O, Se-Gyu;Jeong, Sun-Eok
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.67-75
    • /
    • 1991
  • The crack length measurements by electrical potential(EP) method for 1% Cr-Mo-V and 12%Cr steel of 0.5T-CT specimen were performed at $500^{\circ}C, 600^{\circ}C 700^{\circ}C$, and an applicability of stress intensity factor($K_I$), net section stress($\sigma_{net}$), $C^*$-ingegral and $C_t$ parameter was studied to measure creep crack growth rate(da/dt) with side groove and without side groove under static and cyclic loading condition. The experimental result could be summarized as follows: 1) Crack measurement by EP method was available and coincided with the Johnson, s analytical equation. 2) da/dt by $K_I$ and $\sigma_{net}$ was not adequate because of the wide scatter band according to load and temperature, but $C^*$-integral, except for transition region, was adequate. 3) $C_t$ parameter showed the best fitted line through total creep region without relating with both temperature and load condition. 4) Under the cyclic loading condition, $C_t$ parameter was proper to extimate da/dt. And it was shown that da/dt for 1% Cr-Mo V steel under the static condition(R=1) was 1.16 times faster than the case under cyclic loading(R=0), and for 12% Cr steel, 1.43 times.

  • PDF

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

A Study on the Creep Deformation Behavior of Mg-Zn-Mn-(Ca) Alloys (Mg-Zn-Mn-(Ca)합금의 크리이프 변형거동에 관한 연구)

  • Kang, Dae-Min;Koo, Yang;Sim, Sung-Bo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.73-78
    • /
    • 2006
  • In this paper, creep tests of Mg-Zn-Mn and Mg-Zn-Mn-Ca alloys, which were casted by mold with Mg-3%Zn-1%Mn and Mg-3%Zn-1%Mn-0.2%Ca, were done under the temperature range of 473-573K and the stress range of 23.42-78.00Mpa. The activation energies and the stress exponents were measured to investigate the creep plastic deformation of those alloys, and the rupture lifes of Mg-Zn-Mn alloy were also measured to investigate the fracture behavior. From the results, the activation energy of Mg-Zn-Mn and Mg-Zn-Mn-Ca alloys under the temperature range of 473-493K were measured as 149.87, 145.98KJ/mol, respectively, and the stress exponent were measured as 5.13, 6.06 respectively. Also the activation energies Mg-Zn-Mn and Mg-Zn-Mn-Ca alloys under the temperature range of 553-573K were obtained as 134.41, 129.22KJ/mol, respectively, and tress exponent were obtained as 3.48, 4.63, respectively. Finally stress dependence of rupture life and the activation energy of rupture life of Mg-Zn-Mn under the temperature range of 473-493K was measured as 8.05, 170.0(KJ/mol), respectively, which were a little higher than the results of steady state creep.

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -With Application to an Static Behavior Analysis of Axisymmetric Shell- (탄성지반상에 놓인 철근콘크리트 축대칭 쉘의 정적 및 동적 해석 (III) -비선형 정적거동을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.72-82
    • /
    • 1997
  • In all inelastic deformations time rate effects are always present to some degree. Whether or not their exclusion has a significant influence on the prediction of the material behaviour depends upon several factors. In the study of structural components under static loading conditions at normal temperature it is accepted that time rate effects are generally not important. However metals, especially under high temperatures, exhibit simultaneously the phenomena of creep and viscoplasticity. In this study, elastoplastic and elasto-viscoplastic models include nonlinear geometrical effects were developed and several numerical examples are also included to verify the computer programming work developed here in this work. Comparisons of the calculated results, for the elasto-viscoplastic analysis of an internally pressurised thick cylinder under plane strain condition, have shown that the model yields excellent results. The results obtained from the numerical examples for an elasto-viscoplastic analysis of the Nuclear Reinforced Concrete Containment Structure(NRCCS) subjected to an incrementally applied internal pressure were summarized as follows : 1. The steady state hoop stress distribution along the shell layer of dome and dome wall junction part of NRCCS were linearly behave and the stress in interior surfaces was larger than that in exterior. 2.However in the upper part of the wall of NRCCS the steady state hoop stress in creased linearly from its inner to outer surfaces, being the exact reverse to the previous case of dome/dome-wall junction part. 3.At the lower part of wall of NRCCS, the linear change of steady state hoop stress along its wall layer began to disturb above a certain level of load increase.

  • PDF

Studies on Creep Behavior for Rice Stalks (벼줄기의 크리이프 거동(擧動)에 관한 연구)

  • Huh, Yun Kun;Kim, Sung Rai;Lee, Sang Woo
    • Korean Journal of Agricultural Science
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 1995
  • All agricultural crops and products should be cultured, harvested, handled and processed by the proper mechanical methods in the mechanized farming systems. Agricultural crops might be injured or deformed through various working stages due to static or dynamic forces of machines. Mechanical forces had to be applied with proper degrees to the agricultural crops in incoincidence with properties of crops without any damage of crops so as to increase the work efficiency qualitatively. Knowledges of mechanical properties of agricultural materials are essential to prevent of agricultural crops in relation with mechanical farming system. This study was carried out to examine and analyze the creep behavior of the rice stalk on growing and harvesting periods by mechanical model with computer measurement system in radial directional compressive force and bending force. The creep behavior of the rice stalk could be predicted precisely and its results approached closely to the measured values. The creep behaviors were increased greatly with increase of compressive force, namely, the steady state creep behavior occurred at the force less then 25N and the logarithmic creep behavior at the force bigger than 30N. The instantaneous elastic modulus $E_o$ and the retardation time ${\tau}_K$ were increased together with increase of applied forces, meanwhile the retarded elastic modulus $E_r$ and viscosity ${\eta}_v$ were decreased with increase of applied forces in mechanical model being expected the creep behavior in relation with the level of applied forces, which was well explained that the rice stalk might be visvo-elastic material. In the creep test along the stalk portion with compressive force and bending force, the intermediate portion showed greatest values and also the lower portion showed the least values, which implied that the intermediate portions of rice stalk were very weak. The steady state creep behavior occured at the intermediate portion and the upper portion in the rice stalk at the compressive force larger than 25.0N, which showed the possibility of injury due to external forces.

  • PDF

Studies on Rheological Properties of Rice Plants at the Booting Stage (이삭 밸 때 벼의 리올러지 특성(特性)에 관한 연구(硏究))

  • Hu, Y.K.;Lee, S.W.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 1991
  • Rice plants are subjected to various forces such as natural force of wind and mechanical force of cultivating machines. Rheological behavior of the rice stem can be expressed in terms of three variables : stress, relaxation and time. The objectives of this study are to examine stress relaxation, creep and recovery characteristics on the rice stem in case of axial and radial loading. Stress relaxation with time was studied on three levels of loading rate and on four levels of applied stress. The results were summarized as follows : 1. The hysterisis losses of the rice stem distinctly observed at the radial compression in comparison with axial compression. The hysterisis loss implied that the stem to absorbed energy without being deformed beyond the yield point. 2. Ageneralized Maxwell model consisting of three elements gave a good description of the relaxation behavior of the rice stem. Rate of loading was more significant on the observed relaxation behavior within the short relaxation time, but there were little influences of rate of loading on the relaxation time. 3. The stress relaxation intensity and the residual stress increased in magnitude as the applied stress increased, but the relaxation time was little affected by the applied stress. 4. The coefficients of the stress relaxation model showed much differences in the radial compression and the axial compression, especially the higher relaxation stress of the third element was observed in the radial compression. 5. The behaviors of rice stem in creep and recovery test also might be represented by a four element Burger's model. But the coefficients of the creep model were different from those of the recovery model. 6. The steady-state phenomena of creep appeared at the stress larger than 20 MPa in Samkang and 1.8 MPa in Whajin. 7. The elastic modulus of the stem showed the range from 40 to 60 MPa. It could be considered, as a result, the rice stems had viscoelastic properties.

  • PDF

Evaluation of High Temperature Structural Integrity of Intermediate Heat Exchanger in a Steady State Condition for PGSFR (PGSFR중간열교환기의 정상상태 고온 구조 건전성 평가)

  • Lee, Seong-Hyeon;Koo, Gyeong-Hoi;Kim, Sung-Kyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.107-114
    • /
    • 2016
  • Four cylindrically shaped IHXs(Intermediate Heat Exchangers) are installed in the PHTS(Primary Heat Transfer System) of the PGSFR(Prototype Gen IV Sodium cooled Fast Reactor). As for the IHX, the temperature difference of structure is inevitable result caused by heat transfer between primary coolant sodium and IHTS(Intermediate Heat Transport System) sodium. It is necessary to evaluate the high temperature structural integrity of IHXs which operate at the elevated temperature condition over the creep temperature. In this paper, the high temperature structural integrity of IHX under assumed loading conditions has been reviewed according to ASME code.

An evaluation on in-pile behaviors of SiCf/SiC cladding under normal and accident conditions with updated FROBA-ATF code

  • Chen, Ping;Qiu, Bowen;Li, Yuanming;Wu, Yingwei;Hui, Yongbo;Deng, Yangbin;Zhang, Kun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1236-1249
    • /
    • 2021
  • Although there are still controversial opinions and uncertainty on application of SiCf/SiC composite cladding as next-generation cladding material for its great oxidation resistance in high temperature steam environment and other outstanding advantages, it cannot deny that SiCf/SiC cladding is a potential accident tolerant fuel (ATF) cladding with high research priority and still in the engineering design stage for now. However, considering its disadvantages, such as low irradiated thermal conductivity, ductility that barely not exist, further evaluations of its in-pile behaviors are still necessary. Based on the self-developed code we recently updated, relevant thermohydraulic and mechanical models in FROBA-ATF were applied to simulate the cladding behaviors under normal and accident conditions in this paper. Even through steady-state performance analysis revealed that this kind of cladding material could greatly reduce the oxidation thickness, the thermal performance of UO2-SiC was poor due to its low inpile thermal conductivity and creep rate. Besides, the risk of failure exists when reactor power decreased. With geometry optimization and dopant addition in pellets, the steady-state performance of UO2-SiC was enhanced and the failure risk was reduced. The thermal and mechanical performance of the improved UO2-SiC was further evaluated under Loss of coolant accident (LOCA) and Reactivity Initiated Accident (RIA) conditions. Transient results showed that the optimized ATF had better thermal performance, lower cladding hoop stress, and could provide more coping time under accident conditions.