• Title/Summary/Keyword: Steady-state creep

Search Result 84, Processing Time 0.025 seconds

Spherical Indentation Techniques for Creep Property Evaluation Considering Transient Creep (천이크리프를 고려한 구형압입 크리프 물성평가법)

  • Lim, Dongkyu;Lee, Jin Haeng;Kim, Minsoo;Lee, Hyungyil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1339-1347
    • /
    • 2013
  • Creep through nanoindentations has attracted increasing research attention in recent years. Many studies related to indentation creep tests, however, have simply focused on the characteristics of steady-state creep, and there exist wide discrepancies between the uniaxial test and the indentation test. In this study, we performed a computational simulation of spherical indentations, and we proposed a method for evaluating the creep properties considering transient creep. We investigated the material behavior with variation of creep properties and expressed it using regression equations for normalized variables. We finally developed a program to evaluate the creep properties considering transient creep. By using the proposed method, we successfully obtained creep exponents with an average error less than 1.1 and creep coefficients with an average error less than 2.3 from the load-depth curve.

Life Prediction Analysis of Power Generation Turbine Blades Through Creep Analysis (크리프 해석을 통한 터빈 블레이드의 수명 예측)

  • Park, Jung-Sun;Lee, Soo-Yong;Kim, Jong-Un;Lee, An-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.103-111
    • /
    • 2002
  • Steady-state creep analysis of power generation turbine blade is carried out considering thermal loads and centrifugal forces. Creep strains and stresses of the turbine blade are calculated for 3-D finite clement model of the turbine blade. From the numerical results, creep life of the turbine blade is predicted. The results of creep analysis during about 200 hours indicate that creep strains of the turbine blade do not reach the rupture strain of GTD111. Creep stresses of the turbine blade are relaxed as time increases. Maximum creep strain occurs at the tip section of the airfoil pressure surface. The maximum creep strain of the turbine blade is expected close to the rupture strain after 50,000 hours approximately. The turbine blade may not have creep damage for the starting procedure of the turbine.

Creep characteristic of Mg alloy at high temperature (고온에서 마그네슘 합금의 크리이프 특성)

  • An, Jung-O;Park, Kyong-Do;Kwak, Jae-Seob;Kang, Dae-Min
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.39-44
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc and the applied stress exponent n, rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of $150^{\circ}C$ to $300^{\circ}C$. In order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $150^{\circ}C{\sim}300^{\circ}C$ the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal and a little low, respectively, to that of the self diffusion of Mg alloy.

  • PDF

Creep Characteristic of QFP Solder Joint using Sn-3Ag-0.5Cu (Sn-3Ag-0.5Cu을 적용한 QFP 솔더 접합부의 크립특성에 관한 연구)

  • Jo, Yun-Seong;Han, Seong-Won;Kim, Jong-Min;Choe, Myeong-Gi;Park, Jae-Hyeon;Sin, Yeong-Ui
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.184-186
    • /
    • 2006
  • Sn-3Ag-0.5Cu is one of candidate as an alternative approach to conventional lead-tin solder. In order to evaluate that creep characteristic of QFP, we used Sn-3Ag-0.5Cu where the operating temperature is $100^{\circ}C$. The specimens were loaded to failure at average pull strength in the range of 20% to 25%, X-ray machine is used to eliminate effect of void. In this paper, relation of time-displacement and steady state creep rate was studied, and used to analyze the experimental result.

  • PDF

Creep Characteristics of Ti-6Al-4V Alloy Surface Modified by Plasma Carburized/CrN Coating (복합처리(Carburized/CrN Coating)로 표면개질된 Ti-6Al-4V합금의 크리프 특성)

  • Park, Yong-Gwon;Park, Jung-Ung;Wey, Myeong-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.3
    • /
    • pp.183-189
    • /
    • 2005
  • The effects of duplex-treatment of plasma carburization and CrN coating onto Ti-6Al-4V alloy on its creep properties were investigated by means of a constant stress creep tester. Applying duplex-treatment, specimens having an inner carburized layer of about $150{\mu}m$ in depth and outer CrN layer of about $7.5{\mu}m$ in thickness were prepared. The hardness of duplex-treatment surface was about 1,960 VHN. It also appeared that the duplex-treatment improved the roughness of the surface significantly; $Ra=0.045{\mu}m$ for treated alloy while $Ra=0.321{\mu}m$ for untreated alloy. The steady-state creep behaviors were investigated in a temperature range of $510{\sim}550^{\circ}C$ ($0.42{\sim}0.44T_m$) under an applied stress range of 200~275 MPa. The stress exponent, n, was derived assuming the power law creep behavior. The surface treatment showed a decrease in a value from 9.32 (untreated) to 8.79 (treated). Also the activation energy obtained from an Arrhenius plot increased from 238 to 257 kJ/mol.

The Creep Characteristics of Zirconium-base Alloy (Zirconium계 합금의 Creep특성)

  • Im, S.H.;Rhim, S.K.;Kim, K.H.;Choi, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.3
    • /
    • pp.198-208
    • /
    • 1997
  • The-steady-state creep mechanism and behavior of Zircaloy-4 used as cladding materials in PWR have been investigated in air environment over the temp, ranges from 600 to $645^{\circ}C$ and stress ranges from 4 to $7kg/mm^2$. The stress exponents for the creep deformation of this alloy, n were decreased 4.81, 4.71, 4.64, and 4.56 at 600, 615, 630 and $645^{\circ}C$, respectively; the stress exponents decreased with increasing the temperature and got closer to about 5. The apparent activation energies, Q, were 62.1, 60.0, 57.9 and 55.4 kcal/mole at stresses of 4, 5, 6, $7kg/mm^2$, respectively; the activation energies decreased with increasing the stress and were close to those of volume self diffusion of Zr in Zr-Sn-Fe-Cr system. In results, it can be considered that the creep deformation for Zircaloy-4 was controlled by the dislocation climb over the ranges of this experimental conditions. Larson-Miller parameter, P, for the crept specimens was obtained as P=(T+460)(logt,+23). The failure plane observed by SEM slightly showed up intergranular fracture at this experiment ranges. However, it was essentially dominated by the dimple phenomenon, which was a characteristics of the transgranular fracture.

  • PDF

Transient Creep Analysis in Indentation Tests (압입시험의 천이 크리프 해석)

  • Lee, Jin-Haeng;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.81-90
    • /
    • 2012
  • The indentation test, which is one of the testing methods for evaluating the mechanical properties of materials, can be applied to the evaluation of creep properties. Many studies related to the indentation creep test, however, have just focused on the characteristics of the steady-state creep, so there are wide discrepancies between the uniaxial test and the indentation test. To obtain accurate creep properties, it is therefore important to consider the effects of transient creep. In the present work, the Ogbonna et al.'s work on the spherical indentation test including the transient creep was expanded and applied to the conical indentation creep test. The characteristics of the transient creep were analyzed via finite element simulations and compared with those obtained through spherical indentation. Other effects, such as elastic strain, indenter shape, contact area, and representative strain, which have not been considered properly in prior studies on the creep test, are also discussed.

A Study on the Characteristics of High Temperature and Mechanisms for Creep Deformation of AZ31 Mg Alloy (AZ31마그네슘 합금의 고온특성 및 크리이프 변형기구에 관한연구)

  • Kang, D.M.;An, J.O.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.96-101
    • /
    • 2005
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, uniaxial tension tests at high temperature and creep tests are done in order to investigate the characteristics of high temperature and mechanisms for creep deformation of AZ31 Mg alloy. Yield stress and ultimate tensile stress decreased with increasing temperature, but elongation increased from results of uniaxial tension test at high temperature. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of 473K to 573K and stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $473K{\sim}493K$ and under the stress level of $62.43{\sim}93.59%MPa$, and again at around the temperature of $553K{\sim}573K$ and under the stress level of $23.42{\sim}39.00MPa$, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal, respectively, and a little low to that of the self diffusion of Mg alloy including aluminum. Also rupture surfaces at high temperature have had bigger dimples than those at lower temperature by SEM.

  • PDF

Mechanical Properties and Creep Behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe Alloy Cladding Tubes (Zr-Sn-Fe-Cr 및 Zr-Nb-Sn-Fe 합금 피복관의 기계적 특성 및 Creep 거동)

  • Lee, Sang-Yong;Ko, San;Choi, Young-Chul;Kim, Kyu-Tae;Choi, Jae-Ha;Hong, Sun-Ig
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.326-333
    • /
    • 2008
  • Since the 1990s, the second generation of Zirconium alloys containing main alloy compositions of Nb, Sn and Fe have been used as a replacement of Zircaloy-4 (Zr-Sn-Fe-Cr), a first-generation Zirconium alloy, to meet severe and rigorous reactor operating conditions characterized by high-burn-up, high-power and high-pH operations. In this study, the mechanical properties and creep behaviors of Zr-Sn-Fe-Cr and Zr-Nb-Sn-Fe alloys were investigated in a temperature range of $450{\sim}500^{\circ}C$ and in a stress range of $80{\sim}150\;MPa$. The mechanical testing results indicate that the yield and tensile strengths of the Zr-Nb-Sn-Fe alloy are slightly higher compared to those of Zr-Sn-Fe-Cr. This can be explained by the second phase strengthening of the $\beta$-Nb precipitates. The creep test results indicate that the stress exponent for the steady-state creep rate decreases with the increase in the applied stress. However, the stress exponent of the Zr-Sn-Fe-Cr alloy is lower than that of the Zr-Nb-Sn-Fe alloy in a relatively high stress range, whereas the creep activation energy of the former is slightly higher than that of the latter. This can be explained by the dynamic deformation aging effect caused by the interaction of dislocations with Sn substitutional atoms. A higher Sn content leads to a lower stress exponent value and higher creep activation energy.

Circumferential Creep Behaviors of Zr-Nb-O and Zr-Nb-Sn-Fe Alloy Cladding Tubes Manufactured by Pilgering (Pilgering 법에 의해 제조된 Zr-Nb-O 및 Zr-Nb-Sn-Fe 합금 피복관의 원주방향 Creep 거동)

  • Lee, S.Y.;Ko, S.;Choi, Y.C.;Kim, K.T.;Choi, J.H.;Hong, S.I.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.364-372
    • /
    • 2008
  • In this study, the circumferential creep behaviors ofpilgered advanced Zirconium alloy tubes such as Zr-Nb-O and Zr-Nb-Sn-Fe were investigated in the temperature range of $400\sim500^{\circ}C$ and in the stress range of 80$\sim$150MPa. The test results indicate that the stress exponent for the steady-state creep rate of the Zr-Nb-Sn-Fe alloy decreases with the increase of stress(from 6$\sim$7 to 4), while that of the Zr-Nb-O alloy is nearly independent of stress(5$\sim$6). The activation energy of creep deformation is found to be nearly the same as the activation energy for Zr self diffusion. This indicates that the creep deformation may be controlled by dislocation climb mechanism in Zr-Nb-O. On the other hand, the transition of stress exponent(from 6-7 to 4) in Zr-Nb Sn-Fe strongly suggests the transition of the rate controlling mechanism at high stresses. The lower stress exponent at high stresses in Zr-Nb-Sn-Fe can be explained by the dynamic deformation aging effect caused by interaction of dislocations with Sn substitutional atoms.