• 제목/요약/키워드: Steady-State Forming

검색결과 60건 처리시간 0.026초

SYNTHESIS OF METASTABLE ALLOYS BY ION MIXING IN THE BINARY METAL SYSTEMS AND THEORETICAL MODELLING

  • Liu, B.X.;Zhang, Z.J.;Jin, O.;Pan, F.
    • 한국진공학회지
    • /
    • 제4권S2호
    • /
    • pp.148-155
    • /
    • 1995
  • (1) The metastable crystalline(MX) phases formed by ion mixing are classified into 5 types, i.e. the super-saturated solid solutions and the enlarged HCP-I phases reported earlier, and the newly observed FCC-I phases in hcp-based alloys, The FCC-ll and HCP-ll phases in bcc-based alloys. The growth kinetics of the MX phases is discussed. (2) The interfacial free energy in the multilayered films was found to play an important role in ion beam mixing(IM) induced amorphization. By adding sufficient interfaces, amorphous alloys were obtained even in the systems with rather positive heat of formation. (3) Gibbs free energy diagrams of some representative systems were constructed, by calculating the free energy curves of all the competing phases. Steady-state thermal annealing was conducted and the results confirmed the relevance of the constructed diagrams, which were inturn employed to interpret the MX phase formation as well as the glass forming ability upon IM in the binary metal systems.

  • PDF

Research on the inlet preswirl effect of clearance flow in canned motor reactor coolant pump

  • Xu, Rui;Song, Yuchen;Gu, Xiyao;Lin, Bin;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2540-2549
    • /
    • 2022
  • For a pressurized water reactor power plant, the reactor coolant pump (RCP) is a kernel component. And for a canned motor RCP, the rotor system's properties determines its safety. The liquid coolant inside the canned motor RCP fills clearance between the metal shields of rotor and stator, forming a lengthy clearance flow. The influence of inlet preswirl on rotordynamic coefficients of clearance flow in canned motor RCP and their effects on the rotordynamic characteristics of the pump are numerically and experimentally investigated in this work. A quasi-steady state computational fluid dynamics (CFD) method has been used to investigate the influence of inlet preswirl. A vertical experiment rig has also been established for this purpose. Rotordynamic coefficients on different inlet preswirl ratios (IR) are obtained through CFD and experiment. Results show that the cross-coupled stiffness of the clearance flow would change significantly with inlet preswirl, but other rotordynamic coefficients would not change significantly with inlet preswirl. For the case of clearance flow between the stator and rotor cans, influence of inlet preswirl is not so significant as the IR is not large enough.

Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta)

  • Kang, Eun Ju;Kim, Kwang Young
    • ALGAE
    • /
    • 제31권1호
    • /
    • pp.49-59
    • /
    • 2016
  • Ulva pertusa, a common bloom-forming green alga, was used as a model system to examine the effects of elevated carbon dioxide (CO2) and temperature on growth and photosynthetic performance. To do this, U. pertusa was grown under four temperature and CO2 conditions; ambient CO2 (400 μatm) and temperature (16℃) (i.e., present), elevated temperature only (19℃) (ET; i.e., warming), elevated CO2 only (1,000 μatm) (EC; i.e., acidification), and elevated temperature and CO2 (ET and EC; i.e., greenhouse), and its steady state photosynthetic performance evaluated. Maximum gross photosynthetic rates (GPmax) were highest under EC conditions and lowest under ET conditions. Further, ET conditions resulted in decreased rate of dark respiration (Rd), but growth of U. pertusa was higher under ET conditions than under ambient temperature conditions. In order to evaluate external carbonic anhydrase (eCA) activity, photosynthesis was measured at 70 μmol photons m−2 s−1 in the presence or absence of the eCA inhibitor acetazolamide (AZ), which inhibited photosynthetic rates in all treatments, indicating eCA activity. However, while AZ reduced U. pertusa photosynthesis in all treatments, this reduction was lower under ambient CO2 conditions (both present and warming) compared to EC conditions (both acidification and greenhouse). Moreover, Chlorophyll a and glucose contents in U. pertusa tissues declined under ET conditions (both warming and greenhouse) in conjunction with reduced GPmax and Rd. Overall, our results indicate that the interaction of EC and ET would offset each other’s impacts on photosynthesis and biochemical composition as related to carbon balance of U. pertusa.

다중금속복합층 핵연료 피복관의 필거링 공정에 관한 유한 요소 해석 연구 (Finite Element Analysis of Pilgering Process of Multi-Metallic Layer Composite Fuel Cladding)

  • 김태용;이정현;김지현
    • 한국압력기기공학회 논문집
    • /
    • 제13권2호
    • /
    • pp.75-83
    • /
    • 2017
  • In severe accident conditions of light water reactors, the loss of coolant may cause problems in integrity of zirconium fuel cladding. Under the condition of the loss of coolant, the zirconium fuel cladding can be exposed to high temperature steam and reacted with them by producing of hydrogen, which is caused by the failure in oxidation resistance of zirconium cladding materials during the loss of coolant accident scenarios. In order to avoid these problems, we develop a multi-metallic layered composite (MMLC) fuel cladding which compromises between the neutronic advantages of zirconium-based alloys and the accident-tolerance of non-zirconium-based metallic materials. Cold pilgering process is a common tube manufacturing process, which is complex material forming operation in highly non-steady state, where the materials undergo a long series of deformation resulting in both diameter and thickness reduction. During the cold pilgering process, MMLC claddings need to reduce the outside diameter and wall thickness. However, multi-layers of the tube are expected to occur different deformation processes because each layer has different mechanical properties. To improve the utilization of the pilgering process, 3-dimensional computational analyses have been made using a finite element modeling technique. We also analyze the dimensional change, strain and stress distribution at MMLC tube by considering the behavior of rolls such as stroke rate and feed rate.

Roll bending machine에 의한 선체외판의 곡면가공 해석 (Analysis of Ship Hull Plate Bending By Roll Bending Machine)

  • 김유일;신종계;이장현
    • 대한조선학회논문집
    • /
    • 제33권4호
    • /
    • pp.142-149
    • /
    • 1996
  • 선체 외관을 이루는 판부재 중에서 일차곡만을 가진 부품은 피라미드 형의 롤러 굽힘장치를 이용하여 제작한다. 일차곡 부재를 생산하기 위한 공정에서 가장 중요한 작업 변수는 중앙 롤러의 수직변위값이다. 본 연구에서는 이러한 굽힘 현상을 보의 탄소성 굽힘현상으로 모델링하여 해석해를 구하였으며, 엄밀한 역학적 이해를 위하여 유한요소해석법을 이용하여 굽힘현상을 해석하였다. 해석을 통하여 일정한 굽힘 곡률을 얻기 위한 중앙 롤러의 수직변위 값을 계산하였으며, 유한요소해석법은 보 요소와 평면변형율 요소를 이용하여 모델링하고 각각의 경우에 대한 해석을 수행하였으며 이 결과를 해석해와 비교하였다. 계산을 통하여 판에 가해야 할 굽힘곡률과 중앙롤러의 수직변위 사이의 관계를 도출하였으며 일차곡가공의 중요한 작업변수인 중앙롤러의 수직변위와 잔류곡률상의 관계를 수치 데이터로써 정식화 하였다.

  • PDF

Bubbly, Slug, and Annular Two-Phase Flow in Tight-Lattice Subchannels

  • Prasser, Horst-Michael;Bolesch, Christian;Cramer, Kerstin;Ito, Daisuke;Papadopoulos, Petros;Saxena, Abhishek;Zboray, Robert
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.847-858
    • /
    • 2016
  • An overview is given on the work of the Laboratory of Nuclear Energy Systems at ETH, Zurich (ETHZ) and of the Laboratory of Thermal Hydraulics at Paul Scherrer Institute (PSI), Switzerland on tight-lattice bundles. Two-phase flow in subchannels of a tight triangular lattice was studied experimentally and by computational fluid dynamics simulations. Two adiabatic facilities were used: (1) a vertical channel modeling a pair of neighboring sub-channels; and (2) an arrangement of four subchannels with one subchannel in the center. The first geometry was equipped with two electrical film sensors placed on opposing rod surfaces forming the subchannel gap. They recorded 2D liquid film thickness distributions on a domain of $16{\times}64$ measuring points each, with a time resolution of 10 kHz. In the bubbly and slug flow regime, information on the bubble size, shape, and velocity and the residual liquid film thickness underneath the bubbles were obtained. The second channel was investigated using cold neutron tomography, which allowed the measurement of average liquid film profiles showing the effect of spacer grids with vanes. The results were reproduced by large eddy simulation + volume of fluid. In the outlook, a novel nonadiabatic subchannel experiment is introduced that can be driven to steady-state dryout. A refrigerant is heated by a heavy water circuit, which allows the application of cold neutron tomography.

경사 그루브를 갖는 평판 실의 압력 강하 및 누설 성능 (Pressure Drop and Leakage Performances of Flat Seals with Inclined Grooves)

  • 정진우;정권종;황성호;김태호;김어진
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.213-221
    • /
    • 2022
  • This paper presents performance measurements of pressure drop and leakage flow rate of test flat seals with asymmetric inclined grooves. This study aims to reveal the influence of groove shapes, often machined in radial film riding-face seals, in forming a hydrodynamic wedge on leakage performance. A test facility was developed, and test seals were manufactured to study the effects of the inlet pressure level, ratio of inlet to outlet pressure, seal groove length, and seal groove height on the steady-state pressure drop and leakage performance. A series of tests were conducted, and the test data were compared to the predictions from a simple and efficient mathematical model using a one-dimensional Reynolds equation. The test results revealed that an increase in the inlet pressure increased the pressure drop through the test seals. The leakage flow rate increased significantly as the inlet pressure and ratio of the inlet to outlet pressure increased. The groove shape also affects seal performance. An increase in the groove length and height resulted in an evident increase in the leakage flow rate. The simple model predictions underestimated the leakage flow rates but showed good agreement with the trend in the measurements for all test operating conditions and changes in the groove shape.

Analysis of wet chemical tunnel oxide layer characteristics capped with phosphorous doped amorphous silicon for high efficiency crystalline Si solar cell application

  • Kang, Ji-yoon;Jeon, Minhan;Oh, Donghyun;Shim, Gyeongbae;Park, Cheolmin;Ahn, Shihyun;Balaji, Nagarajan;Yi, Junsin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.406-406
    • /
    • 2016
  • To get high efficiency n-type crystalline silicon solar cells, passivation is one of the key factor. Tunnel oxide (SiO2) reduce surface recombination as a passivation layer and it does not constrict the majority carrier flow. In this work, the passivation quality enhanced by different chemical solution such as HNO3, H2SO4:H2O2 and DI-water to make thin tunnel oxide layer on n-type crystalline silicon wafer and changes of characteristics by subsequent annealing process and firing process after phosphorus doped amorphous silicon (a-Si:H) deposition. The tunneling of carrier through oxide layer is checked through I-V measurement when the voltage is from -1 V to 1 V and interface state density also be calculated about $1{\times}1012cm-2eV-1$ using MIS (Metal-Insulator-Semiconductor) structure . Tunnel oxide produced by 68 wt% HNO3 for 5 min on $100^{\circ}C$, H2SO4:H2O2 for 5 min on $100^{\circ}C$ and DI-water for 60 min on $95^{\circ}C$. The oxide layer is measured thickness about 1.4~2.2 nm by spectral ellipsometry (SE) and properties as passivation layer by QSSPC (Quasi-Steady-state Photo Conductance). Tunnel oxide layer is capped with phosphorus doped amorphous silicon on both sides and additional annealing process improve lifetime from $3.25{\mu}s$ to $397{\mu}s$ and implied Voc from 544 mV to 690 mV after P-doped a-Si deposition, respectively. It will be expected that amorphous silicon is changed to poly silicon phase. Furthermore, lifetime and implied Voc were recovered by forming gas annealing (FGA) after firing process from $192{\mu}s$ to $786{\mu}s$. It is shown that the tunnel oxide layer is thermally stable.

  • PDF

CDMA 상향채널용 CGM-LMS 접목 적응빔형성 알고리듬에 관한 연구 (Study on CGM-LMS Hybrid Based Adaptive Beam Forming Algorithm for CDMA Uplink Channel)

  • 홍영진
    • 한국통신학회논문지
    • /
    • 제32권9C호
    • /
    • pp.895-904
    • /
    • 2007
  • 코드분할다중접속(CDMA)시스템의 역방향에서 사용할 수 있는 스마트안테나의 새로운 빔 형성 알고리듬을 제안하였다. 제안된 알고리듬은 적응 빔 형성을 위하여 Least Mean Square 알고리듬과 Conjugate Gradient 알고리듬을 직렬 연결한 것으로 차선의 웨이트벡터를 생성한다. 웨이트벡터의 갱신은 원하는 사용자 신호의 전력이 다른 신호 즉 간섭신호들의 전력보다 훨씬 크다는 가정 하에 수신기의 PN 상관기에 의한 역확산의 뒷단인 심벌 계층에서 이루어진다. 제안된 알고리듬은 웨이트 갱신을 위한 한 번의 과정에서 안테나 숫자의 다섯 배에 해당하는 O(5N)의 낮은 계산량을 요구한다. 제안된 알고리듬의 웨이트벡터가 평형상태에 도달했을 때의 출력 신호대간섭잡음비(SINR)가 수식으로 표현되었고 제안된 알고리듬에 의한 스마트안테나가 한 개의 안테나로 구성된 재래의 시스템보다 출력 SINR을 월등히 향상시키는 것이 모의실험에 의해 입증되었다. CGM-LMS 접목 알고리듬의 과도 상태에서의 웨이트벡터 수렴특성이 CGM 이나 LMS 알고리듬의 과도상태 수렴특성보다 우수하다는 것이 역시 모의실험에서 보여 졌고 빔 형성기 입력 신호대잡음비가 변화할 때의 BER 특성이 설명되었다.

전자유압 비례밸브와 경사센서를 이용한 농용 프론트 로더 버켓 능동수평유지 시스템 개발 (Development of a self-leveling system for the bucket of an agricultural front-end loader using an electro hydraulic proportional valve and a tilt sensor)

  • 이창주;하종우;최덕수;김학진
    • 드라이브 ㆍ 컨트롤
    • /
    • 제12권4호
    • /
    • pp.60-70
    • /
    • 2015
  • A front-end loader (FEL) mounted on an agricultural tractor is one of the most commonly used implements for farm work. However, when the tractor carries material using the bucket attached to the FEL on a sloping ground, the materials can spill or roll back over the operator due to the tilted body, thereby requiring the bucket surface to remain level at a constant value regardless of varying slopes. In this study, an active system for controlling the angle of the FEL bucket on a tractor based on the real-time measurement of ground slopes was developed to enable the bucket to constantly remain level. A FEL simulator operated based on an electro hydraulic proportional valve (EHPV) was constructed in the laboratory to develop a proportional-integral-derivative (PID) controller forming a virtual electronic control unit (ECU) on the computer, which could automatically adjust the bucket angles depending on varying input angles while sending SAE-J1939 associated messages via CAN BUS to the EHPV. The different parameter values for the PID controller due to the gravity effect of the bucket were determined using a manual PID tuning method while assuming that the tractor travels on either an ascending slope or a descending slope. The developed PID control-based self-leveling system showed a mean of steady-state errors of within $1^{\circ}$ and a mean of delayed times of ~ 0.8s when the step input of $+20^{\circ}$ was given, implying that the developed system and control algorithm would be effective in maintaining the bucket angle at a certain value. Future studies include the improvement of the control algorithm to reduce such a time delay as well as the application of the developed algorithm to the FEL mounted on a tractor tested at a testing ground.