• Title/Summary/Keyword: Steady state position

Search Result 231, Processing Time 0.029 seconds

Position Control for Interior Permanent Magnet Synchronous Motors using an Adaptive Integral Binary Observer

  • Kang, Hyoung-Seok;Kim, Cheon-Kyu;Kim, Young-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.240-248
    • /
    • 2009
  • An approach to control the position for an interior permanent magnet synchronous motor (IPMSM) based on an adaptive integral binary observer is described. The binary controller with a binary observer is composed of a main loop regulator and an auxiliary loop regulator. One of its key features is that it alleviates chatter in the constant boundary layer. However, steady state estimation accuracy and robustness are dependent upon the thickness of the constant boundary layer. In order to improve the steady state performance of the binary observer and eliminate the chattering problem of the constant boundary layer, a new binary observer is formed by adding extra integral dynamics to the existing switching hyperplane equation. Also, the proposed adaptive integral binary observer applies an adaptive scheme because the parameters of the dynamic equations such as the machine inertia and the viscosity friction coefficient are not well known. Furthermore, these values can typically be easily changed during normal operation. However, the proposed observer can overcome the problems caused by using the dynamic equations, and the rotor position estimation is constructed by integrating the rotor speed estimated with a Lyapunov function. Experimental results obtained using the proposed algorithm are presented to demonstrate the effectiveness of the approach.

A Study on Hybrid(Position/Force) Control of Robot Using Time Delay Control (시간지연제어기법을 이용한 로봇의 혼합(위치/힘) 제어에 관한 연구)

  • 장평훈;박병석;박주이
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2554-2566
    • /
    • 1994
  • Robot position/force control has been a difficult task owing to the interaction between a robot and an environment with a rather high stiffness. In addition to the dynamic instability, the interaction causes the following problem : 1) chattering at steady-state, 2) dynamic coupling effect of robot, and 3) performance degradation due to a titled environment. To solve the problem, the Time Delay Control(TDC), which has been known to be quiet robust to plant uncertainties and disturbances, has been applied. In conjunction to TDC, the following three ideas were also used : 1) To reduce the amplitude of the chattering at the steady state, a novel scheme was adopted to enhance the resolution type solution of A/D conversion for the force sensor. 2) To reduce the dynamic coupling, a trajectory type position command was tried on a comparative basis to the step command, as well as a more accurate mass matrix was used instead of the constant mass matrix. 3) And finally to improve the performance in the tilted environment, force derivatives instead of position derivatives were used in the TDC law. Computer simulations and experiments resulted in obvious improvements on the quality of the hybrid control, thereby clearly demonstrating the effectiveness of TDC with the proposed ideas.

The position control of IM using the binary distrubance observer (바이너리 외란관측기를 이용한 유도전동기의 위치제어)

  • Han, Yoon-Seok;Kim, Young-Seok;Kim, Hyun-Joong;You, Wan-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2132-2135
    • /
    • 1997
  • A control approch for the robust position control of IM based on the binary disturbance observer is described. The conventional binary observer is used to remove the chattering problem of variable structure system. However the steady state error may be existed, because the conventioal binary observer etimates external disturbance with constant boundary layers. Thus in order to overcome this problem, the improved binary observer is proposed. By employing the proposed observer, the robustness is achived and the continuous control is realized without the chattering problem and the steady state error. The effectiveness of the proposed observer is confirmed by the computer simulation.

  • PDF

Design of a Controller for Nonlinear Electrohydraulic Position Control Systems (비선형 전기유압 위치제어시스템용 제어기 설계)

  • 서원모;진강규;하주식;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.73-83
    • /
    • 1991
  • A tracking controller which can improve the performance of nonlinear electrohydraulic position control systems is designed and implemented. The method is based on augmenting the system with both compensated integrator and additional integrator, obtaining the feedback control law which stabilizes the linear part of the original nonlinear system, and then readjusting the feedback gains using the describing function method to eliminate the limit cycle in the steady-state. The proposed control law is implemented using OP amplifiers and electronic components, and step and ramp response tests are carried out in the electrohydraulic servomechanism EHS-160. The results show the improvement in both transient and steady-state responses.

  • PDF

The Improved Binary Disturbance Observer for the Position Control of Induction Motors (유도전동기의 위치제어를 위한 개선된 바이너리 외란관측기)

  • 한윤석;김영석;김상욱
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.249-254
    • /
    • 1998
  • A control approach for the robust position control of induction motors based on the improved binary disturbance observer is described. The conventional binary disturbance observer is used to remove the chattering problem of a sliding mode disturbance observer. However, the steady state error may be existed in the conventional binary disturbance observer because it estimates external disturbance with a constant boundary layer. In order to overcome this problem, a new binary disturbance observer with an integral augmented switching hyperplane is improved. The robustness is achieved, and the continuous control is realised by employing the improved observer without the chattering problem and the steady state error. The effectiveness of the improved observer is confirmed by the comparative experimental results.

  • PDF

Analysis and Implementation of ANFIS-based Rotor Position Controller for BLDC Motors

  • Navaneethakkannan, C.;Sudha, M.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.564-571
    • /
    • 2016
  • This study proposes an adaptive neuro-fuzzy inference system (ANFIS)-based rotor position controller for brushless direct current (BLDC) motors to improve the control performance of the drive under transient and steady-state conditions. The dynamic response of a BLDC motor to the proposed ANFIS controller is considered as standard reference input. The effectiveness of the proposed controller is compared with that of the proportional integral derivative (PID) controller and fuzzy PID controller. The proposed controller solves the problem of nonlinearities and uncertainties caused by the reference input changes of BLDC motors and guarantees a fast and accurate dynamic response with an outstanding steady-state performance. Furthermore, the ANFIS controller provides low torque ripples and high starting torque. The detailed study includes a MATLAB-based simulation and an experimental prototype to illustrate the feasibility of the proposed topology.

On Application of Optimization Scheme To Direct Numerical Analysis Of Slider

  • Hwang, Pyung;Khan, Polina;Pan, Galina
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.23-27
    • /
    • 2004
  • The object of the present work is the numerical analysis of the computer hard disk slider. The pressure between slider and disk surfaces is calculated using the Boundary Fitted Coordinate System and Divergence Formulation for the nonlinear Reynolds' equation solution. The optimization scheme is applied to search for the steady state position of the slider. The simplified method is given for the case of the fixed inclined pad. The film thickness ratios and pitching and rolling angles are considered as alternative choice of the slider's coordinates. The behavior of the objective function for the Negative Pressure slider is studied in details. Methods of conjugate directions and feasible directions are applied.

Design of a Controller for Nonlinear Electrohydraulic Position Control Systems (비선형 전기유도 시스템용제어기 특성)

  • 서원모;진강규;하주식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.1
    • /
    • pp.63-72
    • /
    • 1992
  • A tracking controller which can improve the performance of nonlinear electrohydraulic position control system is designed and implemented. The method is based on augmenting the system with integrators, obtaining the feedback control law which stabilizes the linear part of the original nonlinear system, and then reajusting the feedback gains using the deseribing funtion method to eliminate the limit cycle in the steady state. The proposed control law is implemented using OP amplifiers, and step and ramp response tests are carried out in the electrohydraulic servomechanism. The results show the improvement in both rransient and steady-state response.

  • PDF

A New Variable-Structure Position Control for DC Motor Using Fuzzy Logic (퍼지논리를 이용한 직류전동기용 가변구조 위치제어시스템)

  • 이상래;이광원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.625-632
    • /
    • 1992
  • This paper presents a new dc-motor position control approached by Variable Structure System. In order to eliminate a steady-state position error, we propose a switching function composed of position error, velocity, and current ripple. The switching function has an advantage compared to other ones. To determine the control signal voltage, we use a fuzzy logic method. The simulation results show expected performances.

  • PDF

Development of Electric Actuator Position Control System for Automatic Shuttle Shifting of Tractor (트랙터의 전후진 자동 변속을 위한 전자식 액추에이터의 위치 제어 시스템 개발)

  • Choi, Chang-Hyun;Woo, Mi-Na;Lee, Dae-Hyun;Kim, Yong-Joo;Jeong, Jin-Hee
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.224-230
    • /
    • 2010
  • The purpose of this study was to develop position control system of an electric actuator for automatic shuttle shifting of a tractor. The electric actuator was installed at the link of the forward-reverse gearshift of the tractor transmission, and controlled in the ranges of forward, neutral, and reverse positions. The position control system of the electric actuator was developed based on PID (Proportional Integral Derivative) controller and transfer function of the electric actuator. The coefficients of the PID controller were determined by Ziegler-Nichols (Z-N) method and optimized using simulation program. The prototype AMT (Automated Manual Transmission) test unit of the tractor was installed and used to evaluate the performance of the position control. The evaluation system for the control performance consisted of forward-reverse actuator, motor driver, and controller. The tests were conducted as the controlled positions of the actuator were changed from neutral position to forward, neutral, and reverse positions in sequence. The sequential tests were repeated 20 times. The operations of changing the gearshift were considered as the step response of the control system. Maximum overshoot, settling time, and steady-state error were analyzed. The results showed that performance of the position control system was reasonable and qualified. The maximum overshoots, the steady-state errors, and the settling times of the position control system were 10~20%, 1~5%, and 0.92~1.49 sec, respectively. The modifications of the electric actuator will be required to enhance the performance of position control during field operation.