• Title/Summary/Keyword: Steady state loss

Search Result 251, Processing Time 0.025 seconds

Mechanical Loss Model for a Metal Belt CVT (금속벨트 CVT 동력전달 손실모델)

  • Ryu, Wan-Sik;Kim, Pil-Gu;Kim, Hyun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.81-87
    • /
    • 2006
  • In this paper, the belt-pulley mechanical loss is investigated. A bondgraph model for the mechanical loss is developed from the viewpoint of the power flow by assuming that all power losses are attributed to the torque loss. The mechanical loss model consists of transient and steady state part. The coefficients of the power loss model are obtained from the experiments. It is found from the simulations and experiments that the steady state loss depends on the line pressure, input torque and rotational speed while the transient loss depends on the rotational speed, shift speed and the inertial torque.

Estimation and Prediction-Based Connection Admission Control in Broadband Satellite Systems

  • Jang, Yeong-Min
    • ETRI Journal
    • /
    • v.22 no.4
    • /
    • pp.40-50
    • /
    • 2000
  • We apply a "sliding-window" Maximum Likelihood(ML) estimator to estimate traffic parameters On-Off source and develop a method for estimating stochastic predicted individual cell arrival rates. Based on these results, we propose a simple Connection Admission Control(CAC)scheme for delay sensitive services in broadband onboard packet switching satellite systems. The algorithms are motivated by the limited onboard satellite buffer, the large propagation delay, and low computational capabilities inherent in satellite communication systems. We develop an algorithm using the predicted individual cell loss ratio instead of using steady state cell loss ratios. We demonstrate the CAC benefits of this approach over using steady state cell loss ratios as well as predicted total cell loss ratios. We also derive the predictive saturation probability and the predictive cell loss ratio and use them to control the total number of connections. Predictive congestion control mechanisms allow a satellite network to operate in the optimum region of low delay and high throughput. This is different from the traditional reactive congestion control mechanism that allows the network to recover from the congested state. Numerical and simulation results obtained suggest that the proposed predictive scheme is a promising approach for real time CAC.

  • PDF

A Study on the Optimal Design of LLC Resonant Half-bridge dc-dc Converter Using a Steady-state Model with Internal Loss Resistors (내부 손실 저항이 있는 정상상태 모델을 이용한 LLC 공진형 하프 브리지 dc-dc컨버터의 최적 설계에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.80-86
    • /
    • 2022
  • In this paper, the optimal design and circuit simulation verification results of an LLC resonant half-bridge dc-dc converter using a steady-state model with internal loss resistance are reported. Above all, the input/output voltage gain and frequency characteristic equations in the steady-state were derived by reflecting the internal loss resistance in the equivalent circuit. Based on the results, an LLC resonant half-bridge dc-dc converter with an input voltage of 360-420V, an output voltage of 54V, and a maximum power of 3kW was designed, and to verify the design, the PSIM circuit simulation was executed to compare and analyze the result. In particular, the operating range of the converter could be drawn from the frequency characteristic graph of the voltage gain, and when the converter was operated under light and maximum load conditions, it was confirmed that similar results were obtained by comparing simulation results and calculation results in the switching frequency characteristic graph. In addition, the change of the switching frequency with respect to the load current at each input voltage was compared with the calculated value and the simulation result. As a result, it was possible to confirm the usefulness of the analysis result reflecting the internal loss resistance proposed in this paper and the process of the optimal design.

Development of Low Loss Magnetic Levitation System (저손실 자기부상 시스템 개발)

  • Kim Jong-Moon;Kang Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.592-600
    • /
    • 2005
  • In this paper, a low loss magnetic levitation(Maglev) system is suggested and tested. The suggested Maglev system includes four hybrid magnets which consist of permanent magnet and coil. In the steady state, the levitated module system can be supported by attraction force generated by permanent magnet. The coil current controls only dynamic loads due to external disturbances. The module systems are designed by using finite element method(FEM) software tools such as MAXWELL and ANSYS. Also, digital control systems are designed to keep the magnet airgap at a constant value. The control systems include a VME(versa module europa)-based CPU(central processing unit) board, AD(analog to digital) board, PWM(pulse width modulation) board, 4-quadrant chopper, and sensors. In order to estimate the vertical velocity of the magnet, we use second order state observer with acceleration and gap signals as input and output signals, respectively. The characteristics of the suggested low loss Maglev system are demonstrated by experimental results showing coil current of 0A in the steady state of 3m airgap and performance specifications are satisfied for reference gap and force disturbance.

A Study on the Flow Characteristics of Steady State and Pressure Variation inside the Mulffler with the Inflow of Pulsating Exhaust Gas (소음기내의 정상상태 및 맥동파 배기가스 유입에 의한 유동특성에 관한 연구)

  • 김민호;정우인;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.150-159
    • /
    • 1999
  • Exhaust system is composed of several parts. Among, them , design of muffler system strongly influences on engine efficiency and noise reduction. So , through comprehension of flow characteristics inside muffler is necessary . In this study , three-dimensional steady and unsteady compressible flow analysis was performed to understand the flow characteristics, pressure loss and amplitude variation of pulsating pressure. The computational grid generation was carried out using commercial preprocessor ICEM CFD/CAE. And the three-dimensional fluid motion inside the muffler was analyzed by STAR-CD, the computational fluid dynamics code. RNG k-$\varepsilon$ tubulence model was applied to consider the complexity of the geometry and fluid motion. The steady and unsteady flow field inside muffler such as velocity distribution, pulsating pressure and pressure loss was examined. In case of unsteady state analysis, velocity of inlet region was converted from measured pulsating pressure. Experimental measurement of pressure and temperature was carried out to provide the boundary and initial condition for computational study under three engine operating conditions. As a result of this study, we could identify the flow characteristics inside the muffler and obtain the pressure loss, amplitude variation of pulsating exhaust gas.

  • PDF

Experimental and Theoretical Study on the Effect of Pressure on the Surface Reaction over Platinum Catalyst (백금촉매의 표면반응에 미치는 압력의 영향에 관한 실험 및 이론적 연구)

  • Kim, Hyung-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • Surface reaction occurs at a certain surface temperature when a catalyst is heated up in a reactive mixture. If homogeneous ignition does not occur, a steady state is observed because the heat produced by the surface reaction is balanced with the heat loss caused by convection, conduction and radiation. The present paper treats the effects of pressure on the surface temperature at the steady state. Hydrogen and oxygen are used as reactants and nitrogen as an inert gas. A spherical platinum catalyst of 1.5 mm in diameter is sustained in the chamber with two wires of 0.1 mm in diameter. As results, there exists a maximum steady temperature at a certain relative hydrogen concentration which increases with total pressure. At the steady state, it can be approximated that the heat release is estimated by the mass transfer considering the effect of natural convection. The experimental results are explained qualitatively by the approximation.

  • PDF

Development of Seepage Monitoring and Analysis Method with the Hydraulic Head Loss Rate in Sea Dike (수두손실률에 의한 방조제 침투류 감시 및 해석 기법 개발)

  • Eam, Sung Hoon;Heo, Gun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.1-9
    • /
    • 2014
  • In this study the pore water pressures were measured in sea dike constructed with the sand dredged in the sea, and they were analyzed with the hydraulic head loss rate to estimate quantitatively the state of blocking seepage in the sea dike embankment. Blocking state was expressed as the number between 0 and 1. the number of 1 means the state of perfectly blocking seepage and the number of 0 means the state of sea water being passing free. The deeper the installed position was the lower the hydraulic head loss rate was and the longer the seepage path length was the higher the hydraulic head loss rate was. The estimated R-squareds were close to 1, which means that the embankment was steady state without movement of soil particles.

The Implementation of Probabilistic Security Analysis in Composite Power System Reliability (복합전력계통 신뢰도평가의 확률론적 안전도 도입)

  • Cha, Jun-Min;Kwon, Sae-Hyuk;Kim, Hyung-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.5
    • /
    • pp.185-190
    • /
    • 2006
  • The security analysis relates to the ability of the electric systems to survive sudden disturbances such as electric short circuits or unanticipated loss of system elements. It is composed of both steady state and dynamic security analyses, which are not two separate issues but should be considered together. In steady state security analysis including voltage security analysis, the analysis checks that the system is operated within security limits by OPF (optimal power flow) after the transition of a new operating point. On the other hand, dynamic security analysis deals that the transition will lead to an acceptable operating condition. Transient stability, which is the ability of power systems to maintain synchronism when subjected to a large disturbance, is a principal component in dynamic security analysis. Usually any loss of synchronism will cause additional outages. They make the present steady state analysis of the post-contingency condition inadequate for unstable cases. This is the reason of the need for dynamics of systems. Probabilistic criterion can be used to recognize the probabilistic nature of system components and shows the possibility of system security. A comprehensive conceptual framework for probabilistic static and dynamic assessment is presented in this paper. The simulation results of the Western System Coordinating Council (WSCC) system compare an analytical method with Monte-Carlo simulation (MCS). Also, a case study of the extended IEEE Reliability Test System (RTS) shows the efficiency of this approach.

Numerical investigation of steady state characteristics and stability of supercritical water natural circulation loop of a heater and cooler arrangements

  • Rai, Santosh Kumar;Kumar, Pardeep;Panwar, Vinay
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3597-3611
    • /
    • 2021
  • The present paper studies the thermal-hydraulic behaviour of the rectangular supercritical natural circulation loop (SCNCL) using numerical model of one dimensional. Then the results of this model is confirmed with experimental and benchmark results. Variations with several geometric parameters like loop diameter, riser length, and heater length and operating conditions like heater inlet enthalpy, pressure, friction factor, and inlet and exit loss coefficient on steady-state performance are investigated for various orientations like HHHC, HHVC, VHVC and VHHC of the heater and cooler. The chances of existing static instability (Ledinegg excursion) has been investigated, which reveals that it can arise only in a low inlet enthalpy condition, far from the suggested various orientations of heater and cooler.

A Study on Steady State Characteristics of LLC Resonant Half Bridge Converter Considering Internal Losses (내부 손실이 고려된 LLC 공진형 하프브릿지 컨버터의 정상상태 특성에 관한 연구)

  • Ahn, Tae-Young
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.985-991
    • /
    • 2018
  • In this paper, an equivalent circuit reflecting the internal loss of the LLC resonant half bridge converter was proposed and a steady state characteristic equation including the loss factors was derived. Using the results, the frequency characteristics of I/O voltage gain and input impedance were compared with the lossless model In order to verify the proposed model and the derived equation, the main components of the 1kW class LLC resonant half bridge converter were selected under the same conditions and the steady state characteristics such as voltage gain and input impedance were compared. In particular, to compare more closely the steady state error of the two models, we observed the change in switching frequency with respect to the load current, which is considered to be the most important in the actual circuit design stage. As a result, it is confirmed that the error of the operating frequency is significantly improved from the proposed model and the analysis result.