• Title/Summary/Keyword: Steady prediction method

Search Result 124, Processing Time 0.024 seconds

Dynamic Analysis of Harmonically Excited Non-Linear Structure System Using Harmonic Balance Method

  • Mun, Byeong-Yeong;Gang, Beom-Su;Kim, Byeong-Su
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1507-1516
    • /
    • 2001
  • An analytical method is presented for evaluation of the steady state periodic behavior of nonlinear structural systems. This method is based on the substructure synthesis formulation and a harmonic balance procedure, which is applied to the analysis of nonlinear responses. A complex nonlinear system is divided into substructures, of which equations are approximately transformed to modal coordinates including nonlinear term under the reasonable procedure. Then, the equations are synthesized into the overall system and the nonlinear solution for the system is obtained. Based on the harmonic balance method, the proposed procedure reduces the size of large degrees-of-freedom problem in the solving nonlinear equations. Feasibility and advantages of the proposed method are illustrated using the study of the nonlinear rotating machine system as a large mechanical structure system. Results obtained are reported to be an efficient approach with respect to nonlinear response prediction when compared with other conventional methods.

  • PDF

A Numerical Analysis of River-bed Variation in Alluvial Stream (충적하천(沖積河川)의 하상변동(河床變動)에 관한 수치해석(數値解析))

  • Park, Jung Eng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.49-58
    • /
    • 1984
  • This paper is to exhibit the numerical analysis of sediment transport in the slowly varing flow and the sediment transport relation between the steady and the unsteady flow in the alluvial stream. The gradually varied flow of alluvial stream and the sediment transport are very complicated physical phenomen. Therefore the mathematical modeling is needed to be established. Linear implicit means of modified indirect method are applied to sediment transport by numerical analysis instead of the conception of steady flow in order to decrease errors. Further more, this study has purpose on reasonable prediction of the river-bed variation by way of this numerical method.

  • PDF

Simulation of Separation Mechanism by Modeling a Propellant Actuated Device (PAD 모델링을 통한 분리메카니즘 시뮬레이션 기법)

  • Oh, Seok-Jin;Lee, Do-Hyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.45-52
    • /
    • 2010
  • This paper presents a mathematical-physical model to predict the performance of a gas pusher used as a separation system powered by a gas generator. A quasi-steady model is used in order to aid ballistic analysis for a propellant actuated device(PAD). The empirical coefficients of heat loss and friction were determined from experiments. The analytical approach of combustion, flow and movement of a piston inside the chamber of the PAD, consisted of a gas generator and a gas pusher, was simulated by numerical method based on the grain configuration design of the gas generator. The prediction method developed can be usefully applied to the design of separation mechanism systems.

Numerical Studies on the Performance Prediction of a Turbopump System for Liquid Rocket Engines (액체로켓용 터보펌프 성능예측에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Lee, Geesoo;Kim, Jinhan;Yang, Soo Seok;Lee, Daesung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.264-270
    • /
    • 2001
  • The hydraulic performance analysis of an entire pump system composed of an inducer, impeller, volute and seal for the application on turbopumps is performed using three-dimensional Wavier-Stokes equations. A quasi-steady mixing-plane method is used on the impeller/volute interface to simulate the unsteady interaction phenomena. From this wort the effects of each component on the pump performance are investigated at design and off-design conditions through the analysis of flow structures and loss mechanisms. The computational results are in a good agreement with experimental ones in terms of the headrise and efficiency even though very complex flow structures are present. It is found that the asymmetric pressure distribution along the volute wall constitutes the main reason of the difference between experimental and computational results due to the limitation of the applying the quasi-steady method. Since the volute was found to be over-designed according to the pressure distribution of the volute wall, redesign of the volute has been performed resulting in an improved performance characteristic.

  • PDF

Numerical Studies on the Performance Prediction of a Turbopump System for Liquid Rocket Engines (액체로켓용 터보펌프 성능예측에 대한 수치해석적 연구)

  • Choi, Chang-Ho;Lee, Gee-soo;Kim, Jin-han;Yang, Soo-Seok;Lee, Dae-sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.2 s.15
    • /
    • pp.15-21
    • /
    • 2002
  • The hydraulic performance analysis of an entire pump system composed of inducer, impeller, volute and seal for the application of turbopumps is numerically performed using three-dimensional Navier-Stokes equations. A quasi-steady mixing-plane method is used on the impeller/volute interface to simulate the unsteady interaction phenomena. From this work, the effects of each component on the pump performance are investigated at design and off-design conditions through the analysis of flow structures and loss mechanisms. The computational results are in a good agreement with experimental ones in terms of the headrise and efficiency even though very complex flow structures are present. It is found that the asymmetric pressure distribution along the volute wall constitutes the main reason of the difference between experimental and computational results, due to the limitation of the quasi-steady method. Since the volute was found to be over-designed by the pressure distribution of the volute wall, re-design of the volute has been performed, resulting in an improved performance characteristic.

Circumferential steady-state creep test and analysis of Zircaloy-4 fuel cladding

  • Choi, Gyeong-Ha;Shin, Chang-Hwan;Kim, Jae Yong;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2312-2322
    • /
    • 2021
  • In recent studies, the creep rate of Zircaloy-4, one of the basic property parameters of the nuclear fuel code, has been commonly used with the axial creep model proposed by Rosinger et al. However, in order to calculate the circumferential deformation of the fuel cladding, there is a limitation that a difference occurs depending on the anisotropic coefficients used in deriving the circumferential creep equation by using the axial creep equation. Therefore, in this study, the existing axial creep law and the derived circumferential creep results were analyzed through a circumferential creep test by the internal pressurization method in the isothermal conditions. The circumferential creep deformation was measured through the optical image analysis method, and the results of the experiment were investigated through constructed IDECA (In-situ DEformation Calculation Algorithm based on creep) code. First, preliminary tests were performed in the isotropic β-phase. Subsequently in the anisotropic α-phase, the correlations obtained from a series of circumferential creep tests were compared with the axial creep equation, and optimized anisotropic coefficients were proposed based on the performed circumferential creep results. Finally, the IDECA prediction results using optimized anisotropic coefficients based on creep tests were validated through tube burst tests in transient conditions.

Three-dimensional numerical simulation for the prediction of product shape in sheet casting process

  • Chae, Kyung-Sun;Lee, Mi-Hye;Lee, Seong-Jae;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.2
    • /
    • pp.107-117
    • /
    • 2000
  • Prediction of the product shape in sheet casting process is performed from the numerical simulation. A three-dimensional finite element method is used to investigate the flow behavior and to examine the effects of processing conditions on the sheet produced. Effects of inertia, gravity, surface tension and non-Newtonian viscosity on the thickness profile of the sheet are considered since the edge bead and the flow patterns in the chill roll region have great influence on the quality of the products. In the numerical simulation with free surface flows, the spine method is adopted to update the free surface, and the force-free boundary condition is imposed along the take-up plane to avoid severe singularity problems existing at the take-up plane. From the numerical results of steady isothermal flows of a generalized Newtonian fluid, it is shown that the draw ratio plays a major role in predicting the shape of the final sheet produced and the surface tension has considerable effect on the bead thickness ratio and the bead width fraction, while shear-thinning and/or tension-thickening viscosity affect the degree of neck-in.

  • PDF

Dynamic Analysis of Harmonically Excited Non-Linear System Using Multiple Scales Method

  • Moon, Byung-Young;Kang, Beom-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.819-828
    • /
    • 2002
  • An analytical method is presented for evaluation of the steady state periodic behavior of nonlinear systems. This method is based on the substructure synthesis formulation and a MS (multiple scales) procedure, which is applied to the analysis of nonlinear responses. The proposed procedure reduces the size of large degrees-of-freedom problem in solving nonlinear equations. Feasibility and advantages of the proposed method are illustrated with the nonlinear rotating machine system as an example of large mechanical structure systems. In addition, its efficiency for nonlinear response prediction will be shown by comparison of other conventional methods.

A study on the Analysis of Dynamic Characteristic for Nonlinear Rotor-Housing Systems (비선형 로터-하우싱 시스템의 동특성 해석 연구)

  • Kim, G.G.;Lim, J.H.;Chung, I.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.2
    • /
    • pp.69-78
    • /
    • 1995
  • Nonlinear analysis methods are developed which will enable the reliable prediction of the dynamic behavior of the space shuttle main engine(SSME) turbopumps in the presence of bearing clearances and other local nonlinearities. A computationally efficient convolution method, based on discretized Duhamel and transition matrix integral formulations, is developed for the transient analysis. In the formulation, the coupling forces due to the onlinearities are treated as external forces acting on the coupled subsystems. Iteration is utilized to determine their magnitudes at each time increament. The method is applied to a nonlinear generic model of the high pressure oxygen turthods, the convolution approach proved to be more accurate and highly more efficient. For determining the nonlinear, steady-state periodic responses, an incremental harmonic balance(IHB) method was also developed. The method was successfully used to determine dominantly harmonic and subharmonic(subsynchronous) responses of the HPOTP generic model with bearing clearances. A reduction method similar to the impedance formulation utilized with linear systems is used to reduce the housing-totor models to their coordinates at the bearing clearances.

  • PDF

Prediction of Spread and Contact Region in Ring Rolling Process Using Rigid- plastic Finite Element Method (강소성 유한요소법을 이용한 링 압연 공정에서의 폭 퍼짐량 및 접촉영역 예측)

  • Ko, Young-Soo;Yoon, Hwan-Jin;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2670-2677
    • /
    • 2002
  • The ring rolling process involves three-dimensional non-steady material flow and continuous change of radius and thickness of the ring workpiece. In this study, the deformation analysis and geometric updating algorithm of the ring rolling process were verified by using the three-dimensional rigid-plastic finite element method. Manufacturing processes for plain ring and T-shaped ring were investigated by comparing experiments with simulation results, especially in side spread, load-stroke and pressure distribution, showing a good agreement. It was concluded that the simulation method would be a useful tool for the design of a ring rolling process.