• Title/Summary/Keyword: Steady and Transient Analysis

Search Result 388, Processing Time 0.029 seconds

Computer Simulation of an Automotive Air-Conditioning in a Transient Mode

  • Oh, Sang-Han;Won, Sung-Pil
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.4
    • /
    • pp.220-228
    • /
    • 2002
  • The cool-down performance after soaking is very important in an automotive air-conditioning system and is considered as a key design variable. Therefore, transient characteristics of each system component are essential to the preliminary design as well as steady-state performance. The objective of this study is to develop a computer simulation model and ostinato theoretically the transient performance of an automotive air-conditioning system. To do that, the mathematical modelling of each component, such as compressor, condenser, receiver/drier, expansion valve, and evaporator, is presented first of all. The basic balance equations about mass and energy are used in modelling. For detailed calculation, condenser and evaporator are divided into many sub-sections. Each sub-section is an elemental volume for modelling. In models of expansion valve and compressor, dynamic behaviors are not considered in this analysis, but the quasisteady state ones are just considered, such as the relation between mass flow rate and pressure drop in expansion device, polytropic process in compressor, etc. Also it is assumed that there are no heat loss and no pressure drop in discharge, liquid, and suction lines. The developed simulation model is validated by comparing with the laboratory test data of an automotive air-conditioning system. The overall time-tracing properties of each component agreed well with those of test data in this case.

Trim Range and Characteristics of Autorotation(I): Rotor Speed Limit and Pitch Range (자동회전의 트림 범위와 특성(I): 로터 스피드 한계와 피치범위)

  • Kim, Hak-Yoon;Choi, Seong-Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.6
    • /
    • pp.487-497
    • /
    • 2011
  • Numerical analysis has been performed to investigate the rotor speed and pitch range variations when the airspeed is increased in autorotation. Transient Simulation Method(TSM) was used to obtain the steady states of autorotation. The rotor blade was analyzed by the two-dimensional compressible Navier-Stokes solver in order to adapt to the airspeed increase and the results were used in the transient simulation method. Meanwhile, the Pitt/Peters inflow theory was used to supply the induced velocity fields. For the prescribed torque equilibrium state, the combinations of velocity, shaft angle, and pitch angle were produced to investigate the rotor speeds and variable ranges. The rotor tip Mach number and rotor speed were correlated and the trim range of pitch angle was observed with respect to the shaft angle decrease.

Measurement and Analysis of Transient Grounding Resistance with the Pulse Generator (펄스발생기에 의한 과도접지저항의 측정과 분석)

  • Park, J.S.;Yang, J.J.;Lee, K.O.;Lee, B.H.;Lee, B.K.;Ohk, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1864-1866
    • /
    • 1996
  • Grounding is the art of making an electrical connection to the earth. In order to protect man, electrical and/or electric equipments from the lightning strokes, all the energy of lightning strokes must be diverted via a safe path to earth. It is essential to the transient grounding resistance against lightning strokes. In this paper, measurements and analyses of grounding surge impedance have been investigated. For measurements of grounding surge impedance the pulse generator was designed and fabricated. The pulse generator has rise time of 22.4 ns and pulse duration of $8\;{\mu}s$. The transient grounding resistance has been measuring by injecting low power and step current between the earthing system under test and a remote reference earth and measuring the potential rise caused by this current. As a result, the transient grounding resistance against lightning surge in the short time domain is much higher than steady state grounding resistance.

  • PDF

Development of TREND dynamics code for molten salt reactors

  • Yu, Wen;Ruan, Jian;He, Long;Kendrick, James;Zou, Yang;Xu, Hongjie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.455-465
    • /
    • 2021
  • The Molten Salt Reactor (MSR), one of the six advanced reactor types of the 4th generation nuclear energy systems, has many impressive features including economic advantages, inherent safety and nuclear non-proliferation. This paper introduces a system analysis code named TREND, which is developed and used for the steady and transient simulation of MSRs. The TREND code calculates the distributions of pressure, velocity and temperature of single-phase flows by solving the conservation equations of mass, momentum and energy, along with a fluid state equation. Heat structures coupled with the fluid dynamics model is sufficient to meet the demands of modeling MSR system-level thermal-hydraulics. The core power is based on the point reactor neutron kinetics model calculated by the typical Runge-Kutta method. An incremental PID controller is inserted to adjust the operation behaviors. The verification and validation of the TREND code have been carried out in two aspects: detailed code-to-code comparison with established thermal-hydraulic system codes such as RELAP5, and validation with the experimental data from MSRE and the CIET facility (the University of California, Berkeley's Compact Integral Effects Test facility).The results indicate that TREND can be used in analyzing the transient behaviors of MSRs and will be improved by validating with more experimental results with the support of SINAP.

Numerical description of start-up viscoelastic plane Poiseuille flow

  • Park, Kwang-Sun;Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.47-58
    • /
    • 2009
  • We have investigated the transient behavior of 1D fully developed Poiseuille viscoelastic flow under finite pressure gradient described by the Oldroyd-B and Leonov constitutive equations. For analysis we employ a simple $2^{nd}$ order discretization scheme such as central difference for space and the Crank-Nicolson for time approximation. For the analysis of the Oldroyd-B model, we also apply the analytical solution, which is obtained again in this work in terms of elementary solution procedure simpler than the previous one (Waters and King, 1970). Both models demonstrate qualitatively similar solutions, but their eventual steady flowrate exhibits noticeable difference due to the absence or presence of shear thinning behavior. In the inertialess flow, the flowrate instantaneously attains a large value corresponding to the Newtonian creeping flow and then decreases to its steady value when the applied pressure gradient is low. However with finite liquid density the flow field shows severe fluctuation even accompanying reversals of flow directions. As the assigned pressure gradient increases, the flowrate achieves its steady value significantly higher than its value during oscillations after quite long period of time. We have also illustrated comparison between 1D and 2D results and possible mechanism of complex 2D flow rearrangement employing a previous solution of [mite element computation. In addition, we discuss some mathematical points regarding missing boundary conditions in 2D modeling due to the change of the type of differential equations when varying from inertialess to inertial flow.

A Numerical Study on Transient Performance Behavior of a Turbofan Engine with Variable Inlet Guide Vane and Bleed Air Schedules (가변 입구 안내익과 블리드 공기 스케줄에 따른 터보팬 엔진에서의 천이 성능특성에 관한 수치연구)

  • Kim, Sangjo;Son, Changmin;Kim, Kuisoon;Kim, Myungho;Min, Seongki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.52-61
    • /
    • 2015
  • This paper performed a numerical study to analyse the transient performance behavior of a turbofan engine with variable inlet guide vane (IGV) and bleed air schedules. The low bypass ratio mixed flow turbofan engine was considered in this study. For modeling the compressor performance with IGV, the performance maps were generated by using a one-dimensional meanline analysis and feed to the engine simulation program. The IGV and bleed air according to the rotating speed were scheduled to satisfy 10% of surge margin at steady-state condition. The transient engine performance analysis was conducted with the schedules. The engine with IGV schedule showed a higher surge margin and lower turbine inlet temperature than the engine with bleed air schedule during the transient period.

A Numerical Study on the Heat Transfer Characteristics of a Metal Hydride Reactor with Embedded Heat Pipes (내부에 히트파이프를 삽입한 메탈 하이드라이드 반응기의 열전달 특성에 대한 수치해석 연구)

  • Park, Young-Hark;Boo, Joon-Hong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2346-2351
    • /
    • 2008
  • This study deals with heat pipes inserted into the metal hydride(MH) reactor to increase the effective thermal conductivity of the system and thus to enhance the thermal control characteristics. A numerical analysis was conducted to predict the effect of inserted heat pipes on the heat transfer characteristics of MH, which inherently has extremely low thermal conductivity. The numerical model was a cylindrical container of O.D. 76.3 mm and length 1 m, which is partially filled with about 60% of MH material. The heat pipe was made of copper-water combination, which is suitable for operation temperature range between $10^{\circ}C$ and $80^{\circ}C$. Both inner -and outer- heat pipes were considered in the model. Less than two hours of transient time is of concern when decreasing or increasing the temperature for absorption and discharge of hydrogen gas. FLUENT, a commercial software, was employed to predict the transient as well as steady-state temperature distribution of the MH reactor system. The numerical results were compared and analyzed from the view point of temperature uniformity and transient time up to the specified maximum or minimum temperatures.

  • PDF

Performance Analysis of Autorotation(1) : Analysis Method and the Effect of Aerodynamic table (자동회전의 성능해석(1) : 해석 기법과 공력 테이블의 영향)

  • Kim, Hak-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Performance analysis was performed for an autorotating rotor. For a given airspeed, shaft angle, and collective pitch, the steady state of autorotation was judged by using the transient simulation method(TSM), then the thrust, lift, and drag coefficient for that state were computed. Average thrust was calculated from the instantaneous thrusts, in which the TSM was used in blade thrust integration. The analysis method was applied to the model rotor that had been tested by wind tunnel. Some comparison between analysis and test was provided. Two types of two-dimensional airfoil aerodynamic data were utilized in analysis, and they were made by Navier-Stokes Solver in terms of Reynolds and Reynolds-Mach number. The quantitative difference of results using two data set was examined and compared.

Critical Conduction Mode Bridgeless PFC Converter Based on a Digital Control (디지털 제어 기반의 경계점모드 브릿지리스 PFC 컨버터)

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2000-2007
    • /
    • 2016
  • Generally, in order to implement the CRM(Critical Conduction Mode), the analog controller is used rather than a digital controller because the control is simple and uses less power. However, according to the semiconductor technology development and various user needs, digital control system based on a DSP is on the rise. Therefore, in this paper, the CRM bridgeless PFC converter based on a digital control is proposed. It is necessary to detect the inductor current when it reaches zero and peak value, for calculating the on time and off time by using the current information. However, in this paper, the on-time and off-time are calculated by using the proposed algorithm without any current information. If the switching-times are calculated through the steady-state analysis of the converter, they do not reflect transient status such as starting-up. Therefore, the calculated frequency is out of range, and the transient current is generated. In order to solve these problems, limitation method of the on-time and off-time is used, and the limitation values are varied according to the voltage reference. In addition, in steady state, depending on the switching frequency, the inductance is varied because of the resonance between the inductor and the parasitic capacitance of the switching elements. In order to solve the problem, inductance are measured depending on the switching frequency. The measured inductance are used to calculate the switching time for preventing the transient current. Simulation and experimental results are presented to verify the proposed method.

A study on modeling of boiling heat transfer in core debris bed of SFR

  • Venkateswarlu S.;Hemanth Rao E.;Prasad Reddy G.V.;Sanjay Kumar Das;Ponraju D.;Venkatraman B.
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3864-3871
    • /
    • 2024
  • In case of a hypothetical severe accident in a Sodium-cooled Fast Reactor (SFR), coolability of the debris bed in the post-accident phase plays a vital role in mitigating the accident and ensuring the structural integrity of the reactor vessel. Few numerical studies are reported in literature, in which the boiling heat transfer in debris bed is expressed as equivalent heat conduction using similarity law between heat conduction and two-phase heat transfer. However, these studies assumed steady state mass conservation for the boiling zone and neglected the gravity force. Hence, a detailed study has been carried out for various particle sizes and porosities of SFR debris to investigate the influence of above considerations. The effect of gravity on debris bed coolability is studied using steady state model of Lipinski, which showed that gravity has a non-negligible effect, for particle size of 0.3 mm and porosity of 0.5. However, the gravitation force was found to have a negligible effect in dryout heat flux estimation for the bottom cooled configuration. A transient numerical model is developed for simulating the boiling phenomena in debris beds and validated with the published experimental results. The assumption of steady state mass conservation is verified by carrying out transient analysis, which indicated early prediction of the dryout inception. For time dependent heat generation case, the unsteady mass conservation predicted higher DHF compared to constant heat generation.