• Title/Summary/Keyword: Stator-turn fault

Search Result 34, Processing Time 0.023 seconds

Calculation of Distributed Magnetic Flux Density under the Stator-Turn Fault Condition

  • Kim, Kyung-Tae;Hur, Jin;Kim, Byeong-Woo
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.552-557
    • /
    • 2013
  • This paper proposed an analytical model for the distributed magnetic field analysis of interior permanent magnet-type blush-less direct current motors under the stator-turn fault condition using the winding function theory. Stator-turn faults cause significant changes in electric and magnetic characteristic. Therefore, many studies on stator-turn faults have been performed by simulation of the finite element method because of its non-linear characteristic. However, this is difficult to apply to on-line fault detection systems because the processing time of the finite element method is very long. Fault-tolerant control systems require diagnostic methods that have simple processing systems and can produce accurate information. Thus analytical modeling of a stator-turn fault has been performed using the winding function theory, and the distributed magnetic characteristics have been analyzed under the fault condition. The proposed analytical model was verified using the finite element method.

Fault Tolerance Improvement of IPM Type BLDC Motor Considering Winding Configuration under a Stator Inter-Turn Fault Condition (Stator inter-turn fault 발생 시 권선 방식에 따른 IPM Type BLDC Motor의 Fault Tolerance 향상)

  • Kim, Hee-Woon;Yoon, Jin-Gyu;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.524-530
    • /
    • 2011
  • This paper analyzes fault tolerance under a stator turn fault, according to the winding configuration. Improvement of torque characteristics and fault tolerance can be achieved by winding configuration without additional methods. And, torque characteristics and fault tolerance according to the winding configuration can be usually analyzed by analytical method. But, when the stator turn fault generates, compare to the steady-state, analysis of torque characteristics and fault tolerance using the analytical method is not accurate because it does not reflect influence in mutual inductance and magnetic non-linearity. Therefore, analysis of torque characteristics and fault tolerance has to be performed by using the numerical method under fault condition. This paper develops fault characteristics according to the winding configuration using the FEM-base model considered magnetic non-linearity. And, this paper suggests fault tolerance improvement according to the winding configuration, by the comparison of 8/12 and 10/12 models, under fault condition.

Fault Diagnosis Method of Permanent Magnet Synchronous Motor for Electrical Vehicle

  • Yoo, Jin-Hyung;Jung, Tae-Uk
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.413-420
    • /
    • 2016
  • The permanent magnet synchronous motor has high efficiency driving performance and high power density output characteristics compared with other motors. In addition, it has good regenerative operation characteristics during braking and deceleration driving condition. For this reason, permanent magnet synchronous motor is generally applied as a power train motor for electrical vehicle. In permanent magnet synchronous motor, the most probable causes of fault are demagnetization of rotor's permanent magnet and short of stator winding turn. Therefore, the demagnetization fault of permanent magnet and turn fault of stator winding should be detected quickly to reduce the risk of accident and to prevent the progress of breakdown of power train system. In this paper, the fault diagnosis method using high frequency low voltage injection was suggested to diagnose the demagnetization fault of rotor permanent magnet and the turn fault of stator winding. The proposed fault diagnosis method can be used to check the faults of permanent magnet synchronous motor during system check-up process at vehicle starting and idling stop mode. The feasibility and usefulness of the proposed method were verified by the finite element analysis.

Dynamic Analysis Algorithm of Irreversible Demagnetization of IPM-type Brushless DC Motor by Stator Turn Fault (고정자 절연파괴 고장에 의한 매입형 영구자석 BLDC 모터의 불가역 감자에 대한 동적해석 알고리즘)

  • Lee, Yoon-Seok;Kim, Kyung-Tae;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1661-1667
    • /
    • 2013
  • This paper studies the dynamic irreversible demagnetization characteristics of an interior permanent magnet (PM) brushless DC motor with a stator turn fault. A new algorithm, which is a finite element method (FEM) combined with a line voltage equation of the motor, is developed to analyze irreversible demagnetization under dynamic and transient states and considers a stator turn fault. The input current, circulating current, magnetic distribution characteristics, and operating property of the PM, including the irreversible demagnetization in the fault state, are analyzed using this algorithm by considering the magnetic saturation effect. The feasibility of the proposed method confirmed from the analysis results is verified via an experiment. Through this fault analysis, we can accurately check the fault phenomena of a PM motor against the demagnetization fault for fault prevention.

A Fault Severity Index for Stator Winding Faults Detection in Vector Controlled PM Synchronous Motor

  • Hadef, M.;Djerdir, A.;Ikhlef, N.;Mekideche, M.R.;N'diaye, A. O.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2326-2333
    • /
    • 2015
  • Stator turn faults in permanent magnet synchronous motors (PMSMs) are more dangerous than those in induction motors (IMs) because of the presence of spinning rotor magnets that can be turned off at will. Condition monitoring and fault detection and diagnosis of the PMSM have been receiving a growing amount of attention among scientists and engineers in the past few years. The aim of this study is to propose a new detection technique of stator winding faults in a three-phase PMSM. This technique is based on the image analysis and recognition of the stator current Concordia patterns, and will allow the identification of turn faults in the stator winding as well as its correspondent fault index severity. A test bench of a vector controlled PMSM motor behaviors under short circuited turn in two phases stator windings has been built. Some experimental results of the phase to phase short circuits have been performed for diagnosis purpose.

Auto-Diagnosis for Stator Winding Faults Using Distortion Ratio of Park's Vector Pattern (Park's 벡터 패턴의 왜곡률을 이용한 고정자 권선 고장 자동진단)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Yang, Chul-Oh
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.160-163
    • /
    • 2008
  • In this paper, an auto-diagnosis method of the stator winding fault for small induction motor is suggested. 3-phase stator currents are sampled, filtered, and transformed with Park's vector transformation. After then Park's vector patterns are obtained. To detect the stator winding fault automatically, a distortion ratio is newly defined and compared with the one of healthy motor, and the threshold levels of distortion ratio are suggested. The 2-turn, 4-turn, 8-turn winding fault are tested with no load, 25%, 50%, 75%, and 100% rated load. The distortion ratio of the Park's vector patterns are increased as the increase of the faulted turns, but are same as the increase of the load.

Fault Analysis of IPM type BLDC Motor Using Nonlinear Modeling of Stator Inter Turn Faults (고정자 절연파괴 비선형 모델링을 이용한 매입형 영구자석 전동기의 고장분석)

  • Kim, Kyung-Tae;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.531-537
    • /
    • 2011
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM) type BLDC motor having stator inter-turn faults. For more realistic simulation studies, the magnetic non-linearity is also considered in proposed model. And the simulation data are verified through experiment. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the characteristics of an inter-turn fault operated by six-switched inverter are investigated considering the speed control. And the circulating current, which is induced by magnetic linkage flux originated from PM, was analyzed from the view point of distortion of air-gap magnetic flux distribution caused deterioration of their torque.

Detection of Stator Winding Inter-Turn Short Circuit Faults in Permanent Magnet Synchronous Motors and Automatic Classification of Fault Severity via a Pattern Recognition System

  • CIRA, Ferhat;ARKAN, Muslum;GUMUS, Bilal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.416-424
    • /
    • 2016
  • In this study, automatic detection of stator winding inter-turn short circuit fault (SWISCFs) in surface-mounted permanent magnet synchronous motors (SPMSMs) and automatic classification of fault severity via a pattern recognition system (PRS) are presented. In the case of a stator short circuit fault, performance losses become an important issue for SPMSMs. To detect stator winding short circuit faults automatically and to estimate the severity of the fault, an artificial neural network (ANN)-based PRS was used. It was found that the amplitude of the third harmonic of the current was the most distinctive characteristic for detecting the short circuit fault ratio of the SPMSM. To validate the proposed method, both simulation results and experimental results are presented.

Early Detection Technique in IPM-type Motor with Stator-Turn Fault using Impedance Parameter (임피던스 성분을 이용한 매입형 영구자석 전동기의 고정자 절연파괴 고장의 초기 검출 기법)

  • Jeong, Chae-Lim;Kim, Kyung-Tae;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.5
    • /
    • pp.612-619
    • /
    • 2013
  • This paper proposes an early diagnosis technique for the stator-turn fault (STF) in an interior permanent magnet (IPM)-type brushless DC (BLDC) motor using the impedance parameter. We have analyzed the varying characteristics owing to the STF through various experiments and the finite element method (FEM). As a result, we have presented a simple method for fault detection. This technique can be applied without requiring a fast Fourier transform (FFT) and the calculation of the negative-sequence impedance. The fault detection system works on the basis of the comparison the measured impedance with the database impedance. The variations in the characteristics owing to the STF as well as the proposed technique have been verified through the simulation and experiment.

Stator Winding Fault Diagnosis in Small Three-Phase Induction Motors by Park's Vector Approach (Park's Vector 기법을 이용한 소형 3상 유도 전동기의 권선 고장 진단)

  • 박규남;한민관;우혁재;송명현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1291-1296
    • /
    • 2003
  • This paper deals with efficient diagnostic for stator winding fault of 3-phase induction motor using a current Park's vector approach. This method firstly transforms 3-phase stator current to vertical axis current and horizontal axis current of Park's Vector, and then obtains the each Park's Vector Pattern and detects stator winding fault by comparing to Park's Vector Pattern of healthy and fault. Experimental results, obtained by using induction motor having inter-turn fault of 2, 10, 20 turn, demonstrate the effectiveness of the proposed technique, for detecting the presence of stator winding fault under 25%, 50%, and 100% of full load condition.