• Title/Summary/Keyword: Stator Flux

Search Result 605, Processing Time 0.021 seconds

Direct Stator Flux Vector Control Strategy for IPMSM using a Full-order State Observer

  • Yuan, Qingwei;Zeng, Zhiyong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.236-248
    • /
    • 2017
  • A direct stator flux vector control scheme in discrete-time domain is proposed in this paper for the interior permanent magnet synchronous motor (IPMSM) drive to remove the proportional-integral (PI) controller from the direct torque control (DTC) scheme applied to IPMSM and to obtain faster dynamic response and lower torque ripple output. The output of speed outer loop is used as the desired torque angle instead of the desired torque in the proposed scheme. The desired stator flux vector in dq coordinate is calculated with a given amplitude. The state-space equations in discrete-time for IPMSM are established, the actual stator flux vector is estimated in deadbeat manner by a full-order state observer, and then the closed-loop control is achieved by the pole placement. The stator flux error vector is utilized to calculate the reference stator voltage vector. Extracting the angle position and amplitude from the estimated stator flux vector and estimating the output torque are eliminated for the direct feedback control of the stator flux vector. The proposed scheme is comparatively investigated with a PI-SVM DTC scheme by experiment results. Experimental results show the feasibility and advantages of the proposed control scheme.

A New Approach to Direct Torque Control for Induction Motor Drive Using Amplitude and Angle of the Stator Flux Control

  • Kumsuwan, Yuttana;Premrudeepreechacharn, Suttichai;Toliyat, Hamid A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.79-87
    • /
    • 2008
  • This paper proposes the design and implementation of a direct torque controlled induction motor drive system. The method is based on control of decoupling between amplitude and angle of reference stator flux for determining reference stator voltage vector in generating PWM output voltage for induction motors. The objective is to reduce electromagnetic torque ripple and stator flux droop which result in a decrease in current distortion in steady state condition. In addition, the proposed technique provides simplicity of a control system. The direct torque control is based on the relationship between instantaneous slip angular frequency and rotor angular frequency in adjustment of the reference stator flux angle. The amplitude of the reference stator flux is always kept constant at rated value. Experimental results are illustrated in this paper confirming the capability of the proposed system in regards to such issues as torque and stator flux response, stator phase current distortion both in dynamic and steady state with load variation, and low speed operation.

Comparison and Analysis on magnetic structures of Switched Reluctance Motors (Switched Reluctance Motor의 자기적 구조에 대한 비교 해석)

  • Oh, Seok-Gyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.131-141
    • /
    • 2016
  • SRM is designed to meet operating standards such as low cost, simple magnetic structure, a desired operating speed range, high efficiency, high performance, and good matching for DC power. The magnetic flux of SRM is independent of its direction to develop a torque and it allows the flexible characteristics of the magnetic structure for SRM. In this paper, SRM can widely classify two types, Radial-Flux SRM and Axial-Flux SRM, according to the flux direction. Radial-Flux SRM includes Conventional, Segmented stator and rotor, and Double stator SRM, etc. and Axial-Flux SRM includes C-core stator and the Axial-airgap SRM. This paper is subjected the basic characteristics to select the best of the magnetic structure of SRM in the appropriate application by the classification of SRM.

Induction motor sensor less speed control by stator flux oriented method (고정자 자속 기준 제어 방식에 의한 속도검출기 없는 유도전동기 속도 제어 시스템)

  • Park, Min-Ho;Kim, Kyoung-Seo;Kim, Heui-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.268-272
    • /
    • 1989
  • To avoid the use of position sensor or flux sensor in a field oriented induction machine drive system, the terminal quantities are often used to estimate the rotor flux. Since the estimation involves the leakage inductance of the machine, the performance of such systems is sensitive to the variations of leakage. Since estimation of the stator flux is independent of the leakage, the steady state performance of the stator flux oriented system is insensitive to the leakage inductance. In this paper, the torque response of stator flux oriented system is compared to that of rotor flux oriented system by digital simulation. And induction motor sensor less speed control by stator flux oriented method is developed. The performance of the speed estimation is showed by digital simulation.

  • PDF

Direct Vector Control of Induction Motor with Compensator of Stator Resistance (고정자 저항 보상기를 갖는 유도전동기의 직접벡터제어)

  • Jeong, Jong-Jin;Lee, Deuk-Gi;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.555-561
    • /
    • 1999
  • This paper proposes a new compensation algorithm for stator resistance that is crucial for improving the direct vector control performance of an induction motor. This algorithm is based on the flux estimator that is derived from the stator voltage equation. Since a flux estimator is dependent on the stator resistance, a flux error originates from the variation of the stator resistance. This parameter mismatch in the estimator thereafter affects the flux and torque response. Accordingly, a new compensator has been designed to offset this degradation in the responses. The proposed compensator is very simple to implement and does not require any modifications to the motor model or any special interruptions of the controller. The value of the stator resistance is attained in real time through measuring the terminal voltage and current. The effectiveness of the proposed scheme has been confirmed through both simulation and experimentation.

  • PDF

Adaptive Feedback Linearization Control Based on Airgap Flux Model for Induction Motors

  • Jeon Seok-Ho;Baang Dane;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.414-427
    • /
    • 2006
  • This paper presents an adaptive feedback linearization control scheme for induction motors with simultaneous variation of rotor and stator resistances. Two typical modeling techniques, rotor flux model and stator flux model, have been developed and successfully applied to the controller design and adaptive observer design, respectively. By using stator fluxes as states, over-parametrization in adaptive control can be prevented and control strategy can be developed without the need of nonlinear transformation. It also decrease the relative degree for the flux modulus by one, thereby, yielding, a simple control algorithm. However, when this method is used for flux observer, it cannot guarantee the convergence of flux. Similarly, the rotor flux model may be appropriate for observers, but it is not so for adaptive controllers. In addition, if these two existing methods are merged into overall adaptive control system, it brings about structural complexies. In this paper, we did not use these two modeling methods, and opted for the airgap flux model which takes on only the positive aspects of the existing rotor flux model and stator flux model and prevents structural complexity from occuring. Through theoretical analysis by using Lyapunov's direct method, simulations, and actual experiments, it is shown that stator and rotor resistances converge to their actual values, flux is well estimated, and torque and flux are controlled independently with the measurements of rotor speed, stator currents, and stator voltages. These results were achieved under the persistent excitation condition, which is shown to hold in the simulation.

The optimum geometric design of stators for brush less DC linear motors (브러시없는 직류 선형 모터의 고정자 형상 최적 설계)

  • 최문석;김용일;이상락
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1173-1176
    • /
    • 1995
  • We design and analyze two type stators for brushless DC linear motors by the experiment and the computational analysis. For a U-shape stator, the maximum manetic flux density by the finite element method(FEM) is large than that by the experiment by 1.0~2.2%. The result by the FEM is so accurate that it can be applied to the geometric design for the optimization. To increase the maximum magnetic flux density, we suggest an improved stator and analyze it by the 3-D and 2-D models. The maximum magnetic flux density of the improved stator is large than that of the U-Shape stator by 2.7%. Considering the size of the improved stator and maximum magnetic flux density, we determine that the optimized thickness is 5mm for a given specification.

  • PDF

An Improved Central 60° Synchronous Modulation for High Transient Performance with PMSM Stator Flux Control Used in Urban Rail Transit Systems

  • Fang, Xiaochun;Lin, Fei;Yang, Zhongping
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.542-552
    • /
    • 2016
  • Central 60° synchronous modulation is an easy pulse-width modulation (PWM) method to implement for the traction inverters of urban rail trains at a very low switching frequency. Unfortunately, its switching patterns are determined by a Fourier analysis of assumed steady-state voltages. As a result, its transient responses are not very good with over-currents and high instantaneous torque pulses. In the proposed solution, the switching patterns of the conventional central 60° modulation are modified according to the dynamic error between the target and actual stator flux. Then, the specific trajectory of the stator flux and current vector can be guaranteed, which leads to better system transients. In addition, stator flux control is introduced to get smooth mode switching between the central 60° modulation and the other PWMs in this paper. A detailed flow chart of the control signal transmission is given. The target flux is obtained by an integral of the target voltage. The actual PMSM flux is estimated by a minimum order flux state observer based on the extended flux model. Based on a two-level inverter model, improved rules in the α-β stationary coordinate system and equations of the switching patterns amendment are proposed. The proposed method is verified by simulation and experimental results.

Speed Sensorless Vector Control of Induction Motors with an Improved Stator Flux Estimator (개선된 고정자 자속 추정을 통한 유도전동기의 속도센서리스 벡터제어)

  • 신명호;현동석;조순봉;최종률
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.371-375
    • /
    • 1998
  • This paper proposes a programmable low pass filter(LPF) to estimate stator flux for speed sensorless stator flux orientation control of induction motors. The programmable LPF is developed to solve the dc drift problem associated with a pure integrator and an analog LPF with fixed pole. of the programmable LPF is located far from the origin in order to decrease the time constant as speed increases. The programmable LPF has the phase and the magnitude compensator to exactly estimate stator flux in a wide speed range. So, the drift problem is much improved and the stator flux is exactly estimated in the wide speed range. The validity of the proposed programmable LPF is verified by speed sensorless vector control of a 2.2[kW] three-phase induction motor.

  • PDF

Analysis on Parameter Detuning of Induction Motor Drives in Field Weakening Region (약계자영역에서 유도전동기 고정자자속기준제어의 파라미터 비동조 영향 분석)

  • Shin, Myoung-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.9
    • /
    • pp.118-123
    • /
    • 2010
  • The selection of flux level in the maximum torque control of stator flux-oriented induction motor drives in the field weakening region is dependent on stator resistance and inductances. This paper presents parameter detuning effects of stator flux-oriented control drives in the field weakening region. The detuning effects of stator resistance and rotor leakage inductance are analyzed. The decrease of torque and the flux control lost by the detuning of inductance are shown in the simulation results.