• Title/Summary/Keyword: Stator winding

Search Result 425, Processing Time 0.039 seconds

Reducing the Thrust Ripple Generated by the Stacking of Stator Phase Windings of a Linear Pulse Motor (리니어 펄스모터의 고정자 상권선 적층에 따른 추력 리플 저감 기법 연구)

  • Choi, Jaehuyk;Zun, Chanyong;Mok, Hyungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.447-452
    • /
    • 2017
  • The stator phase winding of a linear pulse motor, which is a new type of linear motor, is comprised of two phases and is structurally characterized by a stacking method in which the winding of one phase is laid on top of the winding of another phase. Such a structural characteristic induces a difference in the flux linkage resulting from the flux of each stator phase winding in the same condition. The difference in the induced flux linkage acts as a kind of thrust ripple component in terms of the generated thrust. Thus, in order to maintain consistent thrust force, a method is required to solve the problem caused by the structural singularity. Hence, in this study, we present a technique for reducing the thrust force ripple generated by the stacking of the stator phase windings of a linear pulse motor through the generation of a compensating current reference value of the current controller in order to keep the torque constant. The proposed compensating algorithm is validated by simulations and experimental results.

Harmonic Winding Factors and MMF Analysis for Five-phase Fractional-slot Concentrated Winding PMSM

  • Kang, Huilin;Zhou, Libing;Wang, Jin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • To enhance torque density by harmonic current injection, optimal slot/pole combinations for five-phase permanent magnet synchronous motors (PMSM) with fractional-slot concentrated windings (FSCW) are chosen. The synchronous and the third harmonic winding factors are calculated for a series of slot/pole combinations. Two five-phase PMSM, with general FSCW (GFSCW) and modular stator FSCW (MFSCW), are analyzed and compared in detail, including the stator structures, star of slots diagrams, and MMF harmonic analysis based on the winding function theory. The analytical results are verified by finite element method, the torque characteristics and phase back-EMF are also taken into considerations. Results show that the MFSCW PMSM can produce higher average torque, while characterized by more MMF harmonic contents and larger ripple torque.

Surge Property Analysis for Shorted Turn and Shorted Strand in High Voltage Motor Stator Winding (고압전동기 고정자권선의 턴단락 및 소선단락 써지시험 특성분석)

  • Kong, Tae-Sik;Kim, Hee-Dong;Lee, Young-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.2030-2031
    • /
    • 2007
  • This paper is purpose to understand the surge property for the shorted turn or shorted strand in high voltage motor stator windings. a shorted turn in high voltage motor windings causes a huge circulating current. and overheat windings, consequently burns the motor. a few shorted strands not cause winding failure immediately, but they increase the winding loss and temperature increase due to contact resistance. We carried out the surge test for three cases, normal winding, shorted turn winding and shorted strand winding. and we analyzed the test result.

  • PDF

Study on the Fire Risk in Locked-Rotor Condition of Single-Phase Induction Motor (단상 유도전동기의 구속운전조건에서 화재 위험성에 관한 연구)

  • Ji, Hong-Keun;Song, Jae-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.64-71
    • /
    • 2020
  • In this paper, the fire risk of a single-phase induction motor under a locked-rotor condition is described. In general, motor failure occurs in the locked-rotor condition owing to poor rotation of the rotor. Large inrush current flows when a motor starts, which is approximately 2-15 times larger than the rated current. In a single-phase induction motor under the locked-rotor condition, a large current that corresponds to the inrush current flows continuously through the stator winding. Such an overcurrent rises the temperature inside the stator winding, and thus the insulating material may catch fire. In this study, the restrained operating condition of the single-phase induction motor was simulated. Further, the degree of the overcurrent and temperature rise in the stator winding was measured. The experimental results, confirmed that the overcurrent was seven times larger than the rated current and the fire commenced at a temperature of approximately 300 ℃ inside the stator winding.

Noise Elimination Algorithm for Detecting Partial Discharge of Generator Stator Winding Considering Relation of Periphery Signals (고압 회전기 고정자 권선의 부분방전 계측 시 주변 신호 관계를 고려한 노이즈 제거기법)

  • Shin, Hee-Sang;Cho, Sung-Min;Kang, Chul;Kang, Dong-Sik;Cho, Kuk-Hee;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.17-24
    • /
    • 2008
  • Recently, the importance of supplying the reliable electric power is increasing. therefore, the importance of diagnosis of power equipments is increasing also. Breaking insulation of stator windings is major cause of faults in high voltage generators. On-line PD (Partial Discharge) detection using Capacitive Coupler at stator windings is used widely to diagnose high voltage generator. However, precise PD(Partial Discharge) detection is impossible if detected signals are mixed with PD and noise signal. In this paper, we analyze detected signals using Capacitive Coupler at 13[kV] hydroelectric generator stator winding and suggest not hardware method but noise elimination algorithm for detecting PD of generator stator winding considering relation of periphery signals.

Field Winding Optimization of Superconducting Motor for Flux-linkage Enhancement (초전도모터 쇄교자속 향상을 위한 계자권선 최적 설계)

  • 강준선;이준호;박일한;나완수;주진호;권영길;손명환;김석환
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.280-283
    • /
    • 2003
  • To enhance the performance of superconducting motor, the flux which links the stator windings needs to be increased as much as possible. In this paper we redistributed the field winding to increase the flux-linkage. This paper introduces an algorithm that modifies the rotor winding shape to increase the flux-linkage to stator winding, satisfying both the constant superconductor volume and HTS tape characteristic (I$_{c}$-B curve) constraints. To check the validness of the proposed algorithm, it was applied to the 100 Hp HTS motor model, and about 21 % increase of flux-linkage was confirmed depending on the initial winding shape.e.

  • PDF

Characteristic Analysis of Synchronous Reluctance Motor Related to Slot Numbers and winding using Coupled Preisach Model & FEM (프라이자흐 모델이 결합된 유한요소법을 이용한 슬롯수, 권선법에 따른 동기형 릴럭턴스전동기의 특성해석)

  • Byun, Chan-Geun;Jang, Young-Jin;Lee, Mi-Jung;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1012-1014
    • /
    • 2003
  • This paper deals with the characteristic Analysis of synchronous reluctance motors (SynRMs) using coupled Preisach modeling & FEM. The focus of this paper is the characteristic Analysis relative to Inductances and losses on the basis of stator slot number, winding in SynRMs. The coupled Finite Elements Analysis (FEA) & Preisach model has been used to evaluate the nonlinear solution. Comparisons arc given with characteristics of normal distributed winding SynRM and those according to stator slot number, winding in concentrated winding SynRM, respectively.

  • PDF

Water Absorption Sensor of Generator Stator Bar Insulation using Cross Capacitance (크로스 커패시턴스를 이용한 발전기 고정자 권선 절연물 흡습 측정 센서)

  • Bae, Yong-Chae;Kim, Hee-Soo;Lee, Doo-Young;Lee, Wook-Ryun;Lee, Rae-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1972-1977
    • /
    • 2011
  • The mechanical integrity of generator stator windings is one of the critical point because the electric power is generated and conducted to power system through these windings. To cool down the heat emitted from generator winding during its operation, a majority of generators use de-mineralized water characterized by high cooling efficiency. Contrary to such the excellent cooling efficiency, however, the damaged bar insulations attributed to the absorption of cooling water in the generator stator winding lead to highly time- and cost consuming efforts as well as to service deterioration due to unexpected forced outage of generator. It is described that the new design of water absorption sensor using cross capacitance for generator in power plant in order to increase the reliability of water absorption diagnostics for generator stator bar insulation.

Analysis of Squirrel Cage Induction Motors with Stator Winding Inter-turn Short Circuit (고정자 권선 단락에 따른 농형 유도전동기의 특성해석)

  • Kim, Mi-Jung;Kim, Byong-Kuk;Moon, Ji-Woo;Cho, Yun-Hyun;Hwang, Don-Ha;Kang, Dong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.150-152
    • /
    • 2007
  • The stator faults yield asymmetrical operation of induction machines, such as irregular current, torque pulsation, increased losses and decreased average torque. So it is necessary to detect the stator faults and develope the monitoring system for detecting faults including vibration and noise. This paper describes the method to analysis the induction motors with the stator winding inter-turn short for investigation of the asymmetrical operation during normal and transient states. And a simple method is used for the simulation and analysis of the induction machines with stator asymmetries. Finally, simulation results, finite element analysis and experimental ones are presented. The results can be useful for real-time on-line monitoring of an induction motor.

  • PDF

Properties of On-Line Partial Discharge in Hydrogenerator Stator Windings (수력발전기 고정자 권선의 운전중 부분방전 특성)

  • Kim, Byong-Han;Kim, Hee-Dong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.4
    • /
    • pp.172-177
    • /
    • 2006
  • During normal machine operation, partial discharge(PD) tests were performed with partial discharge analyzer(PDA) in two hydrogenerators. Six cable couplers were installed in circuit ring bus and endwinding of three phases. PDA showed that the normalized quantity number(NQN) and the partial discharge magnitude$(Q_m)$ were very low in hydrogenerator #1 and #2, respectively. The trend analyses of NQN and $Q_m$ value are available for monitoring of the insulation condition in hydrogenerator stator windings. The insulation condition of stator winding can be assessed. Discharge at conductor surface was discovered in B phase(C2 coupler) of hydrogenerator #1. Internal discharges were generated in A and C phases(C2 coupler) of hydrogenerator #1 and in A, Band C phases(C1 and C2 couplers) of hydrogenerator #2. Slot discharges occurred in A, Band C phases(C1 coupler) of hydrogenerator #1. The stator windings of two hydrogenerators were in good condition.