• Title/Summary/Keyword: Stator winding

Search Result 425, Processing Time 0.05 seconds

On-line partial discharge measurement techniques of hydro-generator windings (수력 발전기 권선에서의 운전중 부분방전 측정기법)

  • 황동하;김진봉;김용주;박명수;김택수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.294-300
    • /
    • 1996
  • In hydro-generator, a groundwall insulation of stator windings gradually deteriorates due to mechanical, thermal, electrical and environmental stresses. These stresses combine to result in loose windings, delamination of the stator insulation and/or electrical tracking of the endwinding, all of which can lead to stator insulation failures. Conventionally, off-line tests such as partial discharge measurement, DC/AC current and .DELTA.tan.delta. tests has been used for estimation of winding condition. However, off-line test requires large power supply and generator outage. In addition, major cause of insulation problems such as loose wedges and slot dischages may not be found with off-line diagnoses. This paper introduces the on-line partial discharge measurement techniques using frequency spectrum analyzer(FSA) for the generator stator windings. The experimental results from the UIAM #1 hydro-generator confirms a optimistic application of on-line generator diagnosis method as a reliable tool for evaluation of winding condition.

  • PDF

A Study on the Insulation Properties for Stator Form-wound Winding by Thermal Degradation Test (가속 열열화 시험에 의한 고정자 형권 코일의 절연특성에 관한 연구)

  • 채승훈;김상걸;오현석;신철기;왕종배;김기준;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.115-118
    • /
    • 2000
  • In case of developing new motor, many examinations was tested to decide a motor efficiency and reliability. To give reliability judgment, traction motor winding insulation was tested by electrical method after appling electrical, heat, mechanical, environmental stress. In this study, stator form-wound winding of traction motor in urban transit E.M.U was tested by accelerative thermal degradation test. Stator form-wound winding was tested on the accelerative degradation composed of heat, vibration, moisture, overvoltage and researched insulation resistance, dielectric loss, partial discharge for insulation degradation properties, evaluated withstand voltage. Degradation temperature was $230[^\circ{C}]$, $250[^\circ{C}]$, $270[^\circ{C}]$, for stator form-wound winding respectively. On the test results of accelerative thermal degradation, insulation properties were relied all temperature until 10 times and expected life was evaluated by the rule of reducing $10[^\circ{C}]$ life into halves. Expected life was 31.8 years. It is guaranteed insulation reliability because of exceeding 25 years life times as considering.

  • PDF

Control and Implementation of Dual-Stator-Winding Induction Generator for Variable Frequency AC-Generating System

  • Bu, Feifei;Hu, Yuwen;Huang, Wenxin;Shi, Kai
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.798-805
    • /
    • 2013
  • This paper presents the control and implementation of the dual-stator-winding induction generator for variable frequency AC (VFAC) generating system. This generator has two sets of stator windings embedded into the stator slots. The power winding produces the VFAC power to feed the loads, and the control winding is connected to the static excitation controller to control the generator for output voltage regulation with speed and load variations. On the basis of the idea of power balance, an instantaneous slip frequency control (ISFC) strategy using the information of both the output voltage and the output power is used in this system. A series of experiments is carried out on a 15 kW prototype for verification. Results show that the system has good static and dynamic performance in a wide speed range, which demonstrates that the ISFC strategy is suitable for this system.

A Fault Severity Index for Stator Winding Faults Detection in Vector Controlled PM Synchronous Motor

  • Hadef, M.;Djerdir, A.;Ikhlef, N.;Mekideche, M.R.;N'diaye, A. O.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2326-2333
    • /
    • 2015
  • Stator turn faults in permanent magnet synchronous motors (PMSMs) are more dangerous than those in induction motors (IMs) because of the presence of spinning rotor magnets that can be turned off at will. Condition monitoring and fault detection and diagnosis of the PMSM have been receiving a growing amount of attention among scientists and engineers in the past few years. The aim of this study is to propose a new detection technique of stator winding faults in a three-phase PMSM. This technique is based on the image analysis and recognition of the stator current Concordia patterns, and will allow the identification of turn faults in the stator winding as well as its correspondent fault index severity. A test bench of a vector controlled PMSM motor behaviors under short circuited turn in two phases stator windings has been built. Some experimental results of the phase to phase short circuits have been performed for diagnosis purpose.

Steady State and Transient Analysis of Switched Reluctance Motor Drive Fed from a Controlled AC-DC Rectifier

  • Moussa, Mona Fouad
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1495-1502
    • /
    • 2017
  • The Theory of operation of switched reluctance motors (SRM) depends on the reluctance torque, where energy is transferred to stator winding only. Although its construction is simple, the electrical design is complex, due to the switching configuration needed to deliver power to stator coils. However, because of the nonlinearly of magnetic circuit, SRM has torque ripple. This paper proposes a new strategy to drive SRM from a single-phase AC supply. Each stator winding is connected to AC-DC or AC-AC converters, which is called branch. All branches are connected in parallel to a single-phase AC supply. A shaft encoder allows current production in stator winding during the positive torque production region and terminates it during the negative torque production region. A magnetic flux is produced between stator poles when current is supplied from AC supply to stator coil and repeats many cycles as long as the rate of change of stator inductance is positive. Different possibilities for the configurations of AC-AC or AC-DC converters are introduced to drive SRM from the single-phase AC supply. A case study is presented for a SRM fed from AC supply through semi-controlled AC-DC converter is presented. A simulation model is introduced and verified by experimental rig for two-phase SRM.

Interpretation of Influence Winding Short Phase of Induction Motor to Distortion Ratio of Park's Vector Pattern (유도전동기의 권선 단락 상에 따른 팍스 벡터 패턴 왜곡률의 영향 해석)

  • Yang, Chul-Oh;Kim, Jong-Sun;Kim, Jun-Young;Park, Kyu-Nam;Song, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2075-2076
    • /
    • 2011
  • The stator winding faults diagnosis technique based on MCSA is as follows. Firstly, collecting the 3 phase motor currents, that signal is transformed by (d-q transform, $i_d$, $i_q$). Park's vector pattern, the circle that is down by d-q transformed currents($i_d$, $i_q$). The circle is widely used for stator winding faults detection. The current distortion ratio(DR), defined by the ratio of max-axis and min-axis of ellipse of Park's vector's pattern. In this study, distortion ratio of Park's vector pattern is suggested for Auto diagnosis of stator winding short fault and usefulness of distortion ratio is verified through simulation using LabVIEW program.

  • PDF

A Study on the Evaluation Criteria for the Remaining Life of Hydro-Generator Stator Insulation (수력 발전기 고정자 권선의 절연수명 평가기준 설정에 관한 연구)

  • Hwang, D.H.;Kim, Y.J.;Kim, J.B.;Park, M.S.;Kim, H.G.;Lee, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1769-1773
    • /
    • 1996
  • The remaining life of generator stator winding has been the controversial issue amomg many experts in this area. The report from Japan claims that they can predict the remaining life of generator winding, while the North American has the negative opinion about it. This study aimed at verifying the validity of both Japanese criteria and North American argument on evaluation of generator winding insulation. Non destructive and destructive tests were performed on two hydro-generators. The test results showed that the trend analysis of stator winding insulation was the better option.

  • PDF

Example study of the insulation characteristic change according to the dryness condition in high voltage motor stator winding (고압전동기 고정자권선의 건조상태에 따른 절연특성 변화사례 고찰)

  • Kong, Tae-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2056-2057
    • /
    • 2008
  • This paper is purpose to understand the insulation properties of the high voltage motor stator winding according to the different dryness conditions. we carried out the three times insulation diagnosis test for the same motor stator winding. the first test object is the contaminated winding, second is the washed-out, and natural dried during the 24 hours, and the last is the heating dried in 110$^{\circ}C$ during the 48 hours. the insulation diagnosis tests are consist of the megger, the polarization index, the AC current test, the dissipation factor test and the partial discharge test, we analyzed and made a comparison of the three cases test result.

  • PDF

Optimal Design and Performance Analysis of Permanent Magnet Assisted Synchronous Reluctance Portable Generators

  • Baek, Jeihoon;Kwak, Sangshin;Toliyat, Hamid A.
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2013
  • In this paper, design and performance analysis of robust and inexpensive permanent magnet-assisted synchronous reluctance generators (PMa-SynRG) for tactical and commercial generator sets is studied. More specifically, the optimal design approach is investigated for minimizing volume and maximizing performance for the portable generator. In order to find optimized PMa-SynRG, stator winding configurations and rotor structures are analyzed using the lumped parameter model (LPM). After comparisons of stator windings and rotor structure by LPM, the selected stator winding and rotor structure are optimized using a differential evolution strategy (DES). Finally, output performances are verified by finite element analysis (FEA) and experimental tests. This design process is developed for the optimized design of PMa-SynRG to achieve minimum magnet and machine volume as well as maximum efficiency simultaneously.

Detection of Stator Winding Inter-Turn Short Circuit Faults in Permanent Magnet Synchronous Motors and Automatic Classification of Fault Severity via a Pattern Recognition System

  • CIRA, Ferhat;ARKAN, Muslum;GUMUS, Bilal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.416-424
    • /
    • 2016
  • In this study, automatic detection of stator winding inter-turn short circuit fault (SWISCFs) in surface-mounted permanent magnet synchronous motors (SPMSMs) and automatic classification of fault severity via a pattern recognition system (PRS) are presented. In the case of a stator short circuit fault, performance losses become an important issue for SPMSMs. To detect stator winding short circuit faults automatically and to estimate the severity of the fault, an artificial neural network (ANN)-based PRS was used. It was found that the amplitude of the third harmonic of the current was the most distinctive characteristic for detecting the short circuit fault ratio of the SPMSM. To validate the proposed method, both simulation results and experimental results are presented.