• Title/Summary/Keyword: Stator winding

Search Result 425, Processing Time 0.023 seconds

Characteristic Analysis of the 40kVA High Speed Synchronous Generator considering the Field Current (계자 전류에 따른 40kVA급 고속 동기발전기의 특성 해석)

  • Jang, Seok-Myeong;Ko, Kyoung-Jin;Cho, Han-Wook;Oh, Won-Gku
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.59-61
    • /
    • 2007
  • This paper presents the characteristic analysis of the 40-kVA high speed synchronous generator considering the field current. The generator consist of the rotor with the short-circuited field coils connected armature coils of exciter and the stator with three-phase winding. To analyze the characteristics of the generator, the direct finite element method is applied.

  • PDF

Control Method of a Doubly-fed Induction Generator with Grid Synchronization unaffected by encoder position (엔코더 위치에 강인한 계통연계 기능을 갖는 권선형유도발전기 제어 기법)

  • Park, Jung-Woo;Lee, Ki-Wook;Kim, Dong-Wook;Lee, Kwang-Soo;Park, Jin-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.125-129
    • /
    • 2006
  • In order to transmit energy generated through the stator winding of a doubly-fed Induct ion generator (DFIG), we need to synchronize the generated voltage vector with the grid voltage vector. However, the existing synchronization method works only when the encoder is installed at a specific Position and equivalent constant is precise. In order to solve this Problem, a new synchronization method has been proposed and a way of applying the method to existing doubly-fed induction generator control algorithm has been also proposed. The validity of the proposed methods have been verified using a prototype converter for the control of a 1.5MW-class doubly-fed induction generator

  • PDF

Interturn Fault Tolerant Driving Algorithm of IPMSMs : Maximum Torque Control within Power Loss Limit (IPM모터의 턴쇼트 고장 대응운전 알고리즘 : 전력 손실 한계 내에서 최대토크 제어)

  • Lim, Sung-Hwan;Gu, Bon-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.52-60
    • /
    • 2018
  • The winding of the motor stator coil is broken due to external stress and various factors. If the proper current is not injected when interturn fault(ITF) occurs, the fault can easily be expanded and the motor can be finally destroyed, resulting in many problems with time costs and safety. In this paper, the power loss limit concept, which is the inherent durability of each motor, is applied to secure safety by controlling the total power loss of the motor within the limits. So, we propose an algorithm that can control maximum torque per minimum power loss based on constant torque curve and power loss limit. To verify the proposed method, the simulation and experimental results with an Interior permanent magnet synchronous motor(IPMSM) having an ITF are shown.

A Study on The Diagnosis of Broken Rotor Bars in Three Phase Squirrel-Case Induction Motor (3상 농형 유도전동기 회전자 바의 고장진단에 관한 연구)

  • Kim, K.W.;Kwon, J.L.;Lee, K.J.;Kim, W.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.635-637
    • /
    • 2001
  • The faults of the squirrel cage induction motor is grew increasingly complex as the faults resulting in the shorting of a stator winding and the broken rotor bar or cracked rotor end ring, bearing faults, and so on. The users of electrical machines initially relied on simple protections such as over-current, over-voltage, earth-fault, etc. to ensure safe and reliable operation. but this method cause heavy financial losses and the threat of safety therefore it has now become very important to diagnose faults at there very inception. in this paper, we are going to discuss the detection method of broken rotor bar of squirrel cage induction motor by the motor current signal analysis(MCSA) and the opening terminal voltage signal analysis.

  • PDF

E.M.F Characteristic of Superconducting Synchronous Generator according to Design Parameter (설계변수 변화에 따른 초전도 동기 발전기의 유기기전력 특성)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.65-68
    • /
    • 1999
  • The major deisng parameters that are considered in this paper are: 1) EMF according to width of field coil. 2) EMF according to magnetic shield length. Because of superconducting generator (SG) is actually and air cored machine with its rotor iron and stator iron teeth having been removed. In this case, the desing of the SG must be based on the 3D analysis of the magnetic field. This study presents an effective armature winding type with 3D FEM(Finite Element Method), and compares analyzed and measured results.

  • PDF

A Study on the Analysis of the Characteristics of a tubular Moor-Trial Manufacure and the Characferistics in starting time- (Tubular motor의 특성에 관한 연구)

  • 임달호;이은웅;장석명
    • 전기의세계
    • /
    • v.28 no.3
    • /
    • pp.72-77
    • /
    • 1979
  • The object of this paper is to try to develope Tulular Liner Induction Motor which consists of primary stator that generates traveling magnetic field from the three-phase winding of formed-wound concentric coil, and try to identify the characteristics of starting force. To indentify the theoretical starting force formular we have quoted the conventional Maxwell's basic equation and Poisson's equation which are used in the general machines thereby having obtained the formular of the current with in the conductor and of the air gap magnetic field respectively. General starting force formular is acquired by applying the formular of the current and magnetic field which was theoretically derived above. To this theoretically starting force formula various constants and the values of magnetic flux density resulting from the experimental motor are applied to present theoretically calculated values. Comparing these theoretically caculated values experimentally weighed values, we have proved the validity of theoretical research.

  • PDF

The Study On Analysis Of The Characteristics For Capacitor Motor Having Space Harmonics In Its Magnetic Field (공간고주파자속을 가진 콘덴서 전동기의 특성해석에 관한 연구)

  • Keung Yul Oh
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.29-42
    • /
    • 1975
  • In this paper, the electrical angle between two winding axes in the stator of the capacitor motor is put optional angle, deviding the space harmonics in its magnetic field of two windings and the leakage flux into the forward revolving field and the backward one by the revolving-field theory, its equivalent circuit which consider mutual induction between two windings is depicted. In the depicted equivalent circuit, the rotor resistance for the fundamental flux is devided into the resistance for the rotor bar and endring, and the rotor leakage reactance for the fundamental is devided into the skew leadage reactance and the other, and each circuit constants for each harmonics is expressed in terms of the circuit constants for the fundamental, so it mades easy to determine the characteristics for the capacitor motor. As the circuit constant ratios to the magnetizing reactance of the fundamental are used, motors which have same circuit constant ratios should be resembled in their characteristics.

  • PDF

Thermal Analysis of a Canned Induction Motor for Main Coolant Pump in System-Integrated Modular Advanced Reactor

  • Huh, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.32-36
    • /
    • 2003
  • The three-phase canned induction motor, which consists of a stator and rotor with a seal can, is used for the main coolant pump (MCP) of the System-integrated Modular Advanced Reactor (SMART). The thermal characteristics of the can must be estimated exactly, since the eddy current loss of the can is a dominant parameter in design. Besides the insulation of the motor winding is compared of Teflon, glass fiber, and air, so it is not an easy task to analyze. A FEM thermal analysis was per-formed by using the thermal properties of complex insulation which were obtained by comparing the results of finite element thermal analysis and those of the experiment. As a result, it is shown that the characteristics of prototype canned induction motor have a good agreement with the results of FEM.

dispersion and relaxation of Epoxy/Layered Nanocomposite (에폭시/나노층상복합재료의 유전분산과 완화)

  • Ahn, Joon-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.87-87
    • /
    • 2010
  • Epoxy/mica has been used as the material of high-voltage rotator stator winding due to its high insulation performance, mechanical strength, and thermal stability. In recent years, however, it shows frequent changes in the load of generators and frequent automatic stops due to the significant increase in peak loads from the increase in the applied load of power facilities according to the introduction of advanced and high-technology equipments. Thus, it is necessary to develop new materials that highly develop the conventional insulation materials. Nanotechnology introduced in the present time has become an alternative plan that overcomes such technical limitations. In addition, the nano-scaled intercalation composite has been known as the material that represent excellent electrical, mechanical, and thermal characteristics compared to the conventional materials. This study investigated the dielectric dispersion and relaxation characteristics of the nanocomposite, which was fabricated by mixing epoxy matrix with nano-scaled intercalation mica and clay, according to changes in frequencies and temperatures.

  • PDF

Winding Turn-to-Turn Faults Detection of Fault-Tolerant Permanent-Magnet Machines Based on a New Parametric Model

  • Liu, Guohai;Tang, Wei;Zhao, Wenxiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.23-30
    • /
    • 2013
  • This paper proposes a parametric model for inter-turn fault detection in a fault-tolerant permanent-magnet (FTPM) machine, which can predict the effect of the short-circuit fault to various physical quantity of the machine. For different faulty operations, a new effective stator inter-turn fault detection method is proposed. Finally, simulations of vector-controlled FTPM machine drives are given to verify the feasibility of the proposed method, showing that even single-coil short-circuit fault could be exactly detected.