• Title/Summary/Keyword: Statistics technique

Search Result 879, Processing Time 0.025 seconds

Spatial Distribution Analysis of Metallic Elements in Dustfall using GIS (GIS를 이용한 강하분진 중 금속원소의 공간분포분석)

  • 윤훈주;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.6
    • /
    • pp.463-474
    • /
    • 1997
  • Metallic elements in dustfall have been known as notable air pollutants directly or indirectly influencing human health and wealth. The first aim of this study was to obtain precise spatial distribution patterns of 5 elements (Pb, Zn, K, Cr, and Al) in dustfall around Suwon area. To predict isometric lines of metal fluxes deposited on unsupervised random sites, the study has applied both spatial statistics as a receptor model and a GIS (geographic information system). Total of 31 sampling sites were selected in the study area (roughly 3 by 3 km grid basis) and dustfall samples were then collected monthly basis by the British deposit gauges from Dec., 1995 to Nov., 1996. The metallic elements in the dustfall were then analyzed by an atomic absorption spectrometer (AAS). On the other hand, a base map overlapped by 7 layers was constructed by using the AutoCAD R13 and ARC/INFO 3.4D. Four different spatial interpolation and expolation techniques such as IDW (inverse distance weighted averaging), TIN (triangulated irregular network), polynomial regression, and kriging technique were examined to compare spatial distribution patterns. Each pattern obtained by each technique was substantally different as varing pollutant types, land of use types, and topological conditions, etc. Thus, our study focused intensively on uncertainty analysis based on a concept of the jackknife and the sum of error distance. It was found that a kriging technique was the best applicalbe in this study area.

  • PDF

Polarimetric SAR Image Classification Based on the Degree of Polarization and Co-Polarized Phase-Difference Statistics (편파화 정도와 동일 편파 위상 차를 이용한 SAR 영상 분류)

  • Chang, Geba;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.12
    • /
    • pp.1345-1351
    • /
    • 2007
  • This paper proposes a polarimetric SAR image classification technique based on the degree of poarization(DoP) and copolarized phase-difference(CPD) statistics. At first, the formulation for the DoP and CPD is derived. Then, the classification technique is verified with the SAR full polarimetric L-band data with consideration of exceptional cases. The technique has capability of classifying SAR data into four major classes, such as bare surface, short-vegetation canopy, tall-vegetation canopy, and village.

Applying a Forced Censoring Technique with Accelerated Modeling for Improving Estimation of Extremely Small Percentiles of Strengths

  • Chen Weiwei;Leon Ramon V.;Young Timothy M.;Guess Frank M.
    • International Journal of Reliability and Applications
    • /
    • v.7 no.1
    • /
    • pp.27-39
    • /
    • 2006
  • Many real world cases in material failure analysis do not follow perfectly the normal distribution. Forcing of the normality assumption may lead to inaccurate predictions and poor product quality. We examine the failure process of the internal bond (IB or tensile strength) of medium density fiberboard (MDF). We propose a forced censoring technique that closer fits the lower tails of strength distributions and better estimates extremely smaller percentiles, which may be valuable to continuous quality improvement initiatives. Further analyses are performed to build an accelerated common-shaped Weibull model for different product types using the $JMP^{(R)}$ Survival and Reliability platform. In this paper, a forced censoring technique is implemented for the first time as a software module, using $JMP^{(R)}$ Scripting Language (JSL) to expedite data processing, which is crucial for real-time manufacturing settings. Also, we use JSL to automate the task of fitting an accelerated Weibull model and testing model homogeneity in the shape parameter. Finally, a package script is written to readily provide field engineers customized reporting for model visualization, parameter estimation, and percentile forecasting. Our approach may be more accurate for product conformance evaluation, plus help reduce the cost of destructive testing and data management due to reduced frequency of testing. It may also be valuable for preventing field failure and improved product safety even when destructive testing is not reduced by yielding higher precision intervals at the same confidence level.

  • PDF

A Critical Review of the Use of Inferential Statistics in Library and Information Science Research in Korea (추론통계를 사용한 문헌정보학 연구에서 데이터 수집과 분석에 관한 비평적 고찰)

  • Ro Jung-Soon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.40 no.2
    • /
    • pp.217-242
    • /
    • 2006
  • This Study reviewed 86 research articles using inferential statistics published in 2001-2004 in 4 korean core journals in the field of library and information science. Sampling methods, response rates and nonresponse bias, reliability test, and inferential statistic techniques used in the articles were critically reviewed and analyzed. Nonprobability sampling was mostly used. Average response rate was 74.47%. Parametric statistics were mostly used. Some misunderstandings in using each inferential statistics, especially Reliability Test, Multiple Regression, Factor Analysis, MDS, etc. were reported in this study.

A review on robust principal component analysis (강건 주성분분석에 대한 요약)

  • Lee, Eunju;Park, Mingyu;Kim, Choongrak
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.2
    • /
    • pp.327-333
    • /
    • 2022
  • Principal component analysis (PCA) is the most widely used technique in dimension reduction, however, it is very sensitive to outliers. A robust version of PCA, called robust PCA, was suggested by two seminal papers by Candès et al. (2011) and Chandrasekaran et al. (2011). The robust PCA is an essential tool in the artificial intelligence such as background detection, face recognition, ranking, and collaborative filtering. Also, the robust PCA receives a lot of attention in statistics in addition to computer science. In this paper, we introduce recent algorithms for the robust PCA and give some illustrative examples.

A study on the determination of substrata using the information of exponential response rate by simulation studies (모의실험을 기반으로 지수형 응답률 보정을 위한 세부 층 결정에 관한 연구)

  • Min, Joo-Won;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.621-636
    • /
    • 2018
  • Research on the application of informative sampling technique has been conducted in order to reduce the influence of non-response. Chung and Shin (Korean Journal of Applied Statistics, 30, 993-1004, 2017) showed that the estimation accuracy improved when using exponential response rate information for the parameter estimation if the distribution of errors included in the super population model follows normal distribution. However this method divides the stratum into equally spaced substrata to obtain the sample weight of the informative sampling technique and shows that the accuracy of the estimation improves as the number of substrata increases. In this study, with the given number of total sample size, the optimal substratum boundary points are calculated using equal space, quantile, and LH algorithm; consequently, the results using those methods are compared through simulation. We also studied the criteria to determine the number of substrata and substratum boundaries that can be used in practice with various types of auxiliary variable distributions.

GENERALISED PARAMETERS TECHNIQUE FOR IDENTIFICATION OF SEASONAL ARMA (SARMA) AND NON SEASONAL ARMA (NSARMA) MODELS

  • M. Sreenivasan;K. Sumathi
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.135-135
    • /
    • 1997
  • Times series modeling plays an important role in the field of engineering, Statistics, Biomedicine etc. Model identification is one of crucial steps in the modeling of an AutoRegreesive Moving Average(ARMA(p, q)) process for real world problems. Many techniques have been developed in the literature (Salas et al., McLeod et al. etc.) for the identification of an ARMA(p, q) Model. In this paper, a new technique called The Generalised Parameters Technique is formulated for seasonal and non-seasonal ARMA model identification. This technique is very simple and can e applied to any given time series. Initial estimates of the AR parameters of the ARMA model are also obtained by this method. This model identification technique is validated through many theoretical and simulated examples.

New Unsupervised Classification Technique for Polarimetric SAR Images

  • Oh, Yi-Sok;Lee, Kyung-Yup;Jang, Ge-Ba
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.255-261
    • /
    • 2009
  • A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.

Semi closed-form pricing autocallable ELS using Brownian Bridge

  • Lee, Minha;Hong, Jimin
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.3
    • /
    • pp.251-265
    • /
    • 2021
  • This paper discusses the pricing of autocallable structured product with knock-in (KI) feature using the exit probability with the Brownian Bridge technique. The explicit pricing formula of autocallable ELS derived in the existing paper handles the part including the minimum of the Brownian motion using the inclusion-exclusion principle. This has the disadvantage that the pricing formula is complicate because of the probability with minimum value and the computational volume increases dramatically as the number of autocall chances increases. To solve this problem, we applied an efficient and robust simulation method called the Brownian Bridge technique, which provides the probability of touching the predetermined barrier when the initial and terminal values of the process following the Brownian motion in a certain interval are specified. We rewrite the existing pricing formula and provide a brief theoretical background and computational algorithm for the technique. We also provide several numerical examples computed in three different ways: explicit pricing formula, the Crude Monte Carlo simulation method and the Brownian Bridge technique.