• Title/Summary/Keyword: Statistical fog prediction

Search Result 3, Processing Time 0.018 seconds

No-Reference Visibility Prediction Model of Foggy Images Using Perceptual Fog-Aware Statistical Features (시지각적 통계 특성을 활용한 안개 영상의 가시성 예측 모델)

  • Choi, Lark Kwon;You, Jaehee;Bovik, Alan C.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.131-143
    • /
    • 2014
  • We propose a no-reference perceptual fog density and visibility prediction model in a single foggy scene based on natural scene statistics (NSS) and perceptual "fog aware" statistical features. Unlike previous studies, the proposed model predicts fog density without multiple foggy images, without salient objects in a scene including lane markings or traffic signs, without supplementary geographical information using an onboard camera, and without training on human-rated judgments. The proposed fog density and visibility predictor makes use of only measurable deviations from statistical regularities observed in natural foggy and fog-free images. Perceptual "fog aware" statistical features are derived from a corpus of natural foggy and fog-free images by using a spatial NSS model and observed fog characteristics including low contrast, faint color, and shifted luminance. The proposed model not only predicts perceptual fog density for the entire image but also provides local fog density for each patch size. To evaluate the performance of the proposed model against human judgments regarding fog visibility, we executed a human subjective study using a variety of 100 foggy images. Results show that the predicted fog density of the model correlates well with human judgments. The proposed model is a new fog density assessment work based on human visual perceptions. We hope that the proposed model will provide fertile ground for future research not only to enhance the visibility of foggy scenes but also to accurately evaluate the performance of defog algorithms.

Development and Verification of the Fog Stability Index for Incheon International Airport based on the Measured Fog Characteristics (인천국제공항의 안개 특성에 따른 안개 안정 지수 FSI(Fog Stability Index) 개발 및 검증)

  • Song, Yunyoung;Yum, Seong Soo
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.443-452
    • /
    • 2013
  • The original Fog Stability Index (FSI) is formulated as FSI=$2(T-T_d)+2(T-T_{850})+WS_{850}$, where $T-T_d$ is dew point deficit (temperature-dew point temperature), $T-T_{850}$ is atmospheric stability measure (temperature-temperature at 850 hPa altitude) and $WS_{850}$ is wind speed at 850 hPa altitude. As a way to improve fog prediction at Incheon International Airport (IIA), we develop the modified FSI for IIA, using the meteorological data at IIA for two years from June 2011 to May 2013, the first one year for development and the second one year for validation. The relative contribution of the three parameters of the modified FSI is 9: 1: 0, indicating that $WS_{850}$ is found to be a non-contributing factor for fog formation at IIA. The critical success index (CSI) of the modified FSI is 0.68. Further development is made to consider the fact that fogs at IIA are highly influenced by advection of moisture from the Yellow Sea. One added parameter after statistical evaluation of the several candidate parameters is the dew point deficit at a buoy over the Yellow Sea. The relative contribution of the four parameters (including the new one) of the newly developed FSI is 10: 2: 0.5: 6.4. The CSI of the new FSI is 0.50. Since the developmental period of one year is too short, the FSI should be refined more as the data are accumulated more.

Development and Validation of the Coupled System of Unified Model (UM) and PArameterized FOG (PAFOG) (기상청 현업 모형(UM)과 1차원 난류모형(PAFOG)의 접합시스템 개발 및 검증)

  • Kim, Wonheung;Yum, Seong Soo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.149-154
    • /
    • 2015
  • As an attempt to improve fog predictability at Incheon International Airport (IIA) we couple the 3D weather forecasting model currently operational in Korea Meteorological Administration (regional Unified Model, UM_RE) with a 1D turbulence model (PAFOG). The coupling is done by extracting the meteorological data from the 3D model and properly inserting them in the PAFOG model as initial conditions and external forcing. The initial conditions include surface temperature, 2 m temperature and dew point temperature, geostrophic wind at 850 hPa and vertical profiles of temperature and dew point temperature. Moisture and temperature advections are included as external forcing and updated every hr. To validate the performance of the coupled system, simulation results of the coupled system are compared to those of the 3D model alone for the 22 sea fog cases observed over the Yellow Sea. Three statistical indices, i.e., Root Mean Square Error (RMSE), linear correlation coefficient (R) and Critical Success Index (CSI), are examined, and they all indicate that the coupled system performs better than the 3D model alone. These are certainly promising results but more improvement is required before the coupled system can actually be used as an operational fog forecasting model. For the RMSE, R, and CSI values for the coupled system are still not good enough for operational fog forecast.