Foundry techniquews for large steel casting depends on the skills of foundrymen considerably. Especially, the problem of reducing casring surface defects is difficult to clear numerically. Statistical analysis by using wuantification theory for hot tear and sand inclusion, and multiple regression analysis for dimensional defects have been shown to be examples of solving this difficulty. Many causes of surface defects can be evaluated by these analyses. These evaluations serve as the base data of defect reduction and contribute to the constant improvement of casting quality and quality enhancement activity. The system to perform quality enhancement activity was developed and it proved very useful for transfering foundry techniques and skills from the old to young generations.
본 연구에서는 낙동강 주요 지류를 대상으로 상관분석, 주성분 및 요인분석, 군집분석과 같은 통계분석을 통해 수질 특성을 분석하였다. 유기물질과 영양물질은 높은 상관관계를 가지고 있으며 봄철 및 가을철에 높게 나와 해당 계절에 대한 집중적인 수질 관리가 필요한 것으로 나타났다. 주성분 및 요인분석 결과 전체 분산의 82%를 유기물질, 영양물질, 자연, 기상 등 4개의 주성분으로 설명할 수 있으며 BOD, COD, TOC, TP 항목이 주요 영향요인으로 분석되었다. 군집분석 결과 계절별 유기물, 영양물질의 오염도를 고려하여 4개의 군집으로 분류하였으며 금호강 유역은 사계절 높은 오염특성을 나타내고 있었다. 따라서 지류 하천의 효과적인 수질 관리를 위해서는 시공간적 특성을 고려한 대책이 필요하며 다변량 통계기법은 수질 관리 및 정책 수립에서 유용하게 활용 가능할 것으로 분석되었다.
Most useful statistical techniques in six sigma DMAIC are hypothesis testing and interval estimation. So this paper reviews and derives sample size formula by considering significance level, power of detectability and effect difference. The quality practioners can effectively interpret the practical and statistical significance with the rational sample sizing.
This research paper introduces the application and implementation of medical decision metrics that classifies medical decision-making into four different metrics using statistical diagnostic tools, such as confusion matrix, normal distribution, Bayesian prediction and Receiver Operating Curve(ROC). In this study, the metrics are developed based on cross-section study, cohort study and case-control study done by systematic literature review and reformulated the structure of type I error, type II error, confidence level and power of detection. The study proposed implementation strategies for 10 quality improvement activities via 14 medical decision metrics which consider specificity and sensitivity in terms of ${\alpha}$ and ${\beta}$. Examples of ROC implication are depicted in this paper with a useful guidelines to implement a continuous quality improvement, not only in a variable acceptance sampling in Quality Control(QC) but also in a supplier grading score chart in Supplier Chain Management(SCM) quality. This research paper is the first to apply and implement medical decision-making tools as quality improvement activities. These proposed models will help quality practitioners to enhance the process and product quality level.
The constant need for quality improvement and production rationalization in the chemical and related industries has led to the increasing replacement of conservative control procedures by more specific and environmentally compatible analytical techniques. In this respect, vibrational spectroscopy has developed over the last yews - in combination with new instrumental accessories and statistical evaluation procedures - to one of the most important analytical tools for industrial chemical quality control and process monitoring in a wide field of applications. In the present communication this potential is demonstrated in order to further support the implementation of mid-infrared (MIR), near-infrared (NIR) and Raman spectroscopy Primarily as industrial on-line tools. To this end the data of selected feasibility studies will be discussed in terms of the individual strengths of the different techniques for the respective application.
Purpose: The purpose of this study is to investigate the interaction effects between price determinants of artworks. We expand the methodology in art market by applying machine learning techniques to estimate the price of artworks and compare linear regression and machine learning in terms of prediction accuracy. Methods: Moderated regression analysis was performed to verify the interaction effects of artistic characteristics on price. The moderating effects were studied by confirming the significance level of the interaction terms of the derived regression equation. In order to derive price estimation model, we use multiple linear regression analysis, which is a parametric statistical technique, and k-nearest neighbor (kNN) regression, which is a nonparametric statistical technique in machine learning methods. Results: Mostly, the influences of the price determinants of art are different according to the auction types and the artist 's reputation. However, the auction type did not control the influence of the genre of the work on the price. As a result of the analysis, the kNN regression was superior to the linear regression analysis based on the prediction accuracy. Conclusion: It provides a theoretical basis for the complexity that exists between pricing determinant factors of artworks. In addition, the nonparametric models and machine learning techniques as well as existing parameter models are implemented to estimate the artworks' price.
For the efficient discovery of knowledge and information from the observed systems, data mining techniques can be an useful tool for the prediction of water quality at intake station in rivers. Deterioration of water quality can be caused at intake station in dry season due to insufficient flow. This demands additional outflow from dam since some extent of deterioration can be attenuated by dam reservoir operation to control outflow considering predicted water quality. A seasonal occurrence of high ammonia nitrogen ($NH_3$-N) concentrations has hampered chemical treatment processes of a water plant in Geum river. Monthly flow allocation from upstream dam is important for downstream $NH_3$-N control. In this study, prediction models of water quality based on multiple regression (MR), artificial neural network and data mining methods were developed to understand water quality variation and to support dam operations through providing predicted $NH_3$-N concentrations at intake station. The models were calibrated with eight years of monthly data and verified with another two years of independent data. In those models, the $NH_3$-N concentration for next time step is dependent on dam outflow, river water quality such as alkalinity, temperature, and $NH_3$-N of previous time step. The model performances are compared and evaluated by error analysis and statistical characteristics like correlation and determination coefficients between the observed and the predicted water quality. It is expected that these data mining techniques can present more efficient data-driven tools in modelling stage and it is found that those models can be applied well to predict water quality in stream river systems.
Software today has become an inseparable part of our life. In order to achieve the ever demanding needs of customers, it has to rapidly evolve and include a number of changes. In this paper, our aim is to study the relationship of object oriented metrics with change proneness attribute of a class. Prediction models based on this study can help us in identifying change prone classes of a software. We can then focus our efforts on these change prone classes during testing to yield a better quality software. Previously, researchers have used statistical methods for predicting change prone classes. But machine learning methods are rarely used for identification of change prone classes. In our study, we evaluate and compare the performances of ten machine learning methods with the statistical method. This evaluation is based on two open source software systems developed in Java language. We also validated the developed prediction models using other software data set in the same domain (3D modelling). The performance of the predicted models was evaluated using receiver operating characteristic analysis. The results indicate that the machine learning methods are at par with the statistical method for prediction of change prone classes. Another analysis showed that the models constructed for a software can also be used to predict change prone nature of classes of another software in the same domain. This study would help developers in performing effective regression testing at low cost and effort. It will also help the developers to design an effective model that results in less change prone classes, hence better maintenance.
Water quality characteristics and their spatial variations in the Nakdong River were statistically analyzed by multivariate techniques including correlation analysis, CA, and FA/PCA based on water quality parameters for 17 sites over 2017-2019, yielding PI values for primary factors. Site 10 indicated the highest parameter concentrations, and results of pearson's correlation analysis suggest that non-biodegradable organic matter had been distributed on the site. Five clusters were identified in order of descending pollution levels: I (Ib > Ia) > II (IIa > IIb) > III. Spatial variations started from sub-cluster Ib in which Daegu city and Geumho-river are joined. T-P, PO4-P, SS, COD, and TOC corresponded to VF 1 and 2, which were found to be principal components with strong influence on water quality. Sub-cluster Ib was strongly influenced by NO3-N and T-N compared to other clusters. According to the PIs, water quality pollution deteriorated due to non-biodegradable organic matter, nitrogen- and phosphorus-based nutrient salts in the middle and lower reaches, illustrating worsening water pollution due to inflows of anthropogenic sources on the Geumho-river, i.e., sewage and wastewater, discharged from Site 10, at which there is a concentration of urban, agricultural, and industrial areas.
Purpose: Grain quality is a general concept that covers many characteristics, ranging from physical to biochemical and physiochemical properties. Rice aging during storage is currently a challenge in the rice industry, and is a complicated process involving changes in all of the above properties. Spectroscopic techniques can be used to obtain information on the quality of rice samples in a non-destructive manner. Methods: The objective of this review was to highlight the factors that contribute to rice quality and aging, and to describe various spectroscopic modalities, particularly vibrational and hyperspectral imaging, for the assessment of rice quality. Results: Starch and protein are the main components of the rice endosperm, and are therefore key factors contributing to eating and cooking quality. While the overall starch, protein, and lipid content in the rice grain remains essentially unchanged during storage, structural changes do occur. These changes affect pasting and gel properties, and ultimately the flavor of cooked rice. In addition, grain quality is significantly affected by growing and environmental conditions, such as water availability, temperature, fertilizer application, and salinity stress. These properties can be evaluated using spectroscopic techniques, and rice samples can be discriminated by using multivariate statistical analysis methods. Conclusion: Hyperspectral imaging and vibrational spectroscopy techniques have good potential for determining rice quality properties in a non-invasive manner, i.e., not requiring the introduction of instruments into the rice grain.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.