• Title/Summary/Keyword: Statistical Method

Search Result 9,446, Processing Time 0.027 seconds

Bootstrap Method for k-Spatial Medians

  • Jhun, Myoung-Shic
    • Journal of the Korean Statistical Society
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 1986
  • The k-medians clustering method is considered to partition observations into k clusters. Consistency and advantage of bootstrap confidence sets of k optimal cluster centers are discussed. The k-medians and k-means clustering methods are compared by using actual data sets.

  • PDF

MARS Modeling for Ordinal Categorical Response Data: A Case Study

  • Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.711-720
    • /
    • 2000
  • A case study of modeling ordinal categorical response data with the MARS method is done. The study is to analyze the effect of some personal characteristics and socioeconomic status on the teenage marijuana use. The MARS method gave a new insight into the data set.

  • PDF

Sampling Based Approach to Hierarchical Bayesian Estimation of Reliability Function

  • Younshik Chung
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.43-51
    • /
    • 1995
  • For the stress-strengh function, hierarchical Bayes estimations considered under squared error loss and entropy loss. In particular, the desired marginal postrior densities ate obtained via Gibbs sampler, an iterative Monte Carlo method, and Normal approximation (by Delta method). A simulation is presented.

  • PDF

Estimable Functions in Row-column Designs

  • Dong Kwon Park
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.366-375
    • /
    • 1995
  • A method is presented for finding estimable functions in a row-column design. It can easily be applied because the method consists of solving equations derived from the design eithout using the design matrix. It determines not only the estimability of treatment effects but also between row(or column)and treatment effects.

  • PDF

A Study on Change-Points in System Reliability

  • Kwang Mo Jeong
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.10-19
    • /
    • 1994
  • We study the change-point problem in the context of system reliability models. The maximum likelihood estimators are obtained based on the Jelinski and Moranda model. To find the approximate distribution of the change-point estimator, we suggest of parametric bootstrap method in which the estimators are substituted in the assumed model. Through an example we illustrate the proposed method.

  • PDF

Robust Estimation and Outlier Detection

  • Myung Geun Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.1 no.1
    • /
    • pp.33-40
    • /
    • 1994
  • The conditional expectation of a random variable in a multivariate normal random vector is a multiple linear regression on its predecessors. Using this fact, the least median of squares estimation method developed in a multiple linear regression is adapted to a multivariate data to identify influential observations. The resulting method clearly detect outliers and it avoids the masking effect.

  • PDF

An Animated Plot of Locally Linear Approximation Method

  • Seo, Han-Son
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.1
    • /
    • pp.77-84
    • /
    • 1998
  • ARES plot (Cook and Weisberg, 1987) idea is applied to a multiple regression model in which the relation between a response variable and some independent variable is nonlinear. This method is expected to show the impact on the function to which and independent variable should be transformed, as a variable is smoothly added to the model.

  • PDF

A Quasi-Likelihood Approach to Nonlinear Filtering Problems

  • Kim, Yoon-Tae
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.2
    • /
    • pp.221-235
    • /
    • 1998
  • Suppose that an observed process can be written as the additive model of the signal process and the noise process with unknown parameters. In practice the signal process is not directly observed. We consider the problem of estimating parameter from the observation process using the quasi-likelihood method.

  • PDF

Statistical Estimation and Algorithm in Nonlinear Functions

  • Jea-Young Lee
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.135-145
    • /
    • 1995
  • A new algorithm was given to successively fit the multiexponential function/nonlinear function to data by a weighted least squares method, using Gauss-Newton, Marquardt, gradient and DUD methods for convergence. This study also considers the problem of linear-nonlimear weighted least squares estimation which is based upon the usual Taylor's formula process.

  • PDF

Comparison between nonlinear statistical time series forecasting and neural network forecasting

  • Inkyu;Cheolyoung;Sungduck
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.87-96
    • /
    • 2000
  • Nonlinear time series prediction is derived and compared between statistic of modeling and neural network method. In particular mean squared errors of predication are obtained in generalized random coefficient model and generalized autoregressive conditional heteroscedastic model and compared with them by neural network forecasting.

  • PDF