The purposes of study were to survey the status of nutrition education in school and investigate the perception of nutrition teacher candidates concerning the direction and ideal method for nutrition education. A questionnaire was distributed to 554 nutrition teacher candidates from August to October, 2006. A total of 468 usable data were collected (84.5% response rate). The statistical data analysis was completed by using SPSS for Windows (ver. 10.0) for descriptive analysis, ANOVA and $X^2$-test. About 52% of respondents had nutrition education teaching experience. Half of the respondents indicated that the necessity for nutrition education stemmed from their own need for such education. The main problem in students' dietary life was 'the increasing intake of processed foods, instant foods and fast foods (4.23 out of Likert 5 point scale)' and the major nutritional problem was 'high calorie intake with low essential nutrients (3.96 out of Likert 5 point scale)'. Over half the respondents (53.4%) recommended that nutrition education be oriented towards behavioral change rather than knowledge delivery. Social learning theory was preferred mostly as an theory apt to nutrition education (60.3%) and the most effective means of education was referred to organizing the regular class for nutrition education (50.5%). The 'playing such as songs or game' was reported as both effective and realizable method in nutrition education.
Journal of the Korea Society of Computer and Information
/
v.27
no.8
/
pp.253-261
/
2022
In this study, the educational effect were sought to be identified after developing and applying project learning for the artificial intelligence based liberal arts education for the non-computer majors. A paired-sample t-test was performed within each group to determine the extent of improvement in the learning flow and artificial intelligence efficacy in the experimental and control groups. After class, an independent sample t-test was performed to examine the statistical effects of pre-test and post-test on the learning flow and artificial intelligence efficacy in the experimental and control groups. The experimental group and control group demonstrated significant improvements in the learning flow and artificial intelligence efficacy before and after class, each respectively. There was no statistically significant difference in the learning flow between the experimental group for which the project learning method was applied and the control group for which only theory and practice were conducted in the artificial intelligence class. It was also confirmed that the experimental group for which the project learning method was applied improved the efficacy of artificial intelligence to a significant level compared to the control group which only proceeded with theory and practice.
Recently, most interchanges of information have been performed in the internet environments. So, the technuque, which is used as intrusion deleting tool for system protecting against attack, is very important. But, the skills of intrusion detection are newer and more delicate, we need preparations for defending from these attacks. Currently, lots of intrusion detection systemsmake the midel of intrusion detection rule using experienced data, based on this model they have the strategy of defence against attacks. This is not efficient for defense from new attack. In this paper, a new model of intrusion detection is proposed. This is hybrid statistical learning model using likelihood ratio test and statistical learning theory, then this model can detect a new attack as well as experienced attacks. This strategy performs intrusion detection according to make a model by finding abnomal attacks. Using KDD Cup-99 task data, we can know that the proposed model has a good result of intrusion detection.
Chae, Han;Han, Sang Yun;Yang, GiYoung;Kim, Hyungwoo
The Korea Journal of Herbology
/
v.37
no.2
/
pp.13-21
/
2022
Objectives : The evaluation of academic achievement is pivotal for establishing accurate direction and adequate level of medical education. The purpose of this study was to firstly establish innovative item analysis technique of Item Response Theory (IRT) for analyzing multiple-choice test of herbology in the traditional Korean medicine education which has not been available for the difficulty of test theory and statistical calculation. Methods : The answers of 390 students (2012-2018) to the 14 item herbology test in college of Korean medicine were used for the item analysis. As for the multidimensional analysis of item characteristics, difficulty, discrimination, and guessing parameters along with item-total correlation and percentage of correct answer were calculated using Classical Test Theory (CTT) and IRT. Results : The validity parameters of strong and weak items were illustrated in multiple perspectives. There were 4 items with six acceptable index scores, and 5 items with only one acceptable index score. The item discrimination of IRT was found to have no significant correlation with difficulty and discrimination indices of CTT emphasizing attention of professionals of medical education as for the test credibility. Conclusion : The critical suggestions for the development, utilization and revision of test items in the e-learning and evidence-based Teaching era were made based on the results of item analysis using IRT. The current study would firstly provide foundation for upgrading the quality of Korean medicine education using test theory.
Proceedings of the Korea Inteligent Information System Society Conference
/
2004.11a
/
pp.361-368
/
2004
The purpose of the study was to explore the potential of the Social Network Analysis as an analytical tool for scientific investigation of learner-learner, or learner-tutor interaction within an Computer Supported Corporative Learning (CSCL) environment. Theoretical and methodological implication of the Social Network Analysis had been discussed. Following theoretical analysis, an exploratory empirical study was conducted to test statistical correlation between traditional performance measures such as achievement and team contribution index, and the centrality measure, one of the many quantitative measures the Social Network Analysis provides. Results indicate the centrality measure was correlated with the higher order learning performance and the peer-evaluated contribution indices. An interpretation of the results and their implication to instructional design theory and practices were provided along with some suggestions for future research.
The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.
Purpose: The purpose of this study is to examine the needs of prior field learning and the academic achievement of field experience learning in a college. Methods: This study was performed from May 1 to October 30, and students were given questionnaire. The research questionnaire as follows: (1) to investigate the academic achievement after field experience learning, (2) to verify the needs of field experience learning. A statistical analysis was performed using SPSS 17.0 for window version. Results: The results was as follows : First, satisfaction of field learning had scored good(47.2%) in lesson goal, good(51.8%) in acquisition of knowledge and techniques, good(51.0%) in preparation of study and good(45.9%) in association. Second, curriculum of field learning had scored normal(35.5%) in prior education, good(47.4%) in composition, good(50.8%) in guidance and good(47.2%) in contents. Third, curriculum of field learning had scored good(44.6%) in duration, good(46.1%) in numbers, good(51.3%) in convenience and normal(38.1%) in means of transportation. Forth, needs of field learning had scored good(46.6%) in field learning of practicum, good(48.2%) in field learning of theory subject, 3-4 times(42.0%) in frequency of field learning and 2hours(57.3%) in a field learning hour. Conclusion: These findings suggest that college student's thinking of field experience learning is positive. Field experience learning provided that college students have directly an opportunity of gaining valuable experience to feel the field.
Song Dae-Gon;Choi Seong-Man;Yoo Cheol-Jung;Chang Ok-Bae
Proceedings of the Korean Information Science Society Conference
/
2005.11b
/
pp.820-822
/
2005
학습자들의 효과적인 학습을 위하여 구성주의 학습이론을 바탕으로 웹 기반 코스웨어를 설계하였다. 기존의 학습과정인 교과서, 멀티미어 타이틀, 웹을 기반으로 한 코스웨어 등이 개발되어 교육현장에서 적용되면서 학습자에게 학습 흥미유발 및 교육성취도 등에서 효과가 있는 것으로 많은 연구자료에서 검증되었다. 하지만 기존의 코스웨어들은 하나의 과정으로 순차적이며 단계적인 학습이 이루어지는 단점이 있어 본 논문에서는 이러한 점을 보완하였다. 학습자들이 각자의 경험과 지식에 바탕을 두어 여러 유형의 학습안중에서 각자에 맞는 학습안을 선택하여 학습하도록 하였다. 즉, 기존의 웹 기반 코스웨어의 장점을 살리면서 좀더 학습자에 맞는 웹 기반 코스웨어를 개발하여 적용하였다. 이러한 결과 구성주의 학습이론을 적용한 코스웨어가 학습자 중심의 능동적인 학습을 통해 학습 성취도를 높여주는 것으로 나타났다.
Journal of the Korean Data and Information Science Society
/
v.22
no.2
/
pp.197-206
/
2011
The ability to detect online abnormal events in signals is essential in many real-world signal processing applications. In order to detect abnormal events, previously known algorithms require an explicit signal statistical model, and interpret abnormal events as statistical model abrupt changes. In general, maximum likelihood and Bayesian estimation theory to estimate well as detection methods have been used. However, the above-mentioned methods for robust and tractable model, it is not easy to estimate. More freedom to estimate how the model is needed. In this paper, we investigate a machine learning, descriptor-based approach that does not require a explicit descriptors statistical model, based on support vector machines are known to be robust statistical models and a sequential optimal algorithm online support vector machine is introduced.
This article employs Support Vector Machine (SVM) for determination of fracture parameters critical stress intensity factor ($K^s_{Ic}$) and the critical crack tip opening displacement ($CTOD_c$) of concrete. SVM that is firmly based on the theory of statistical learning theory, uses regression technique by introducing ${\varepsilon}$-insensitive loss function has been adopted. The results are compared with a widely used Artificial Neural Network (ANN) model. Equations have been also developed for prediction of $K^s_{Ic}$ and $CTOD_c$. A sensitivity analysis has been also performed to investigate the importance of the input parameters. The results of this study show that the developed SVM is a robust model for determination of $K^s_{Ic}$ and $CTOD_c$ of concrete.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.