• Title/Summary/Keyword: Statistical Forecasting

Search Result 480, Processing Time 0.03 seconds

Accuracy analysis of flood forecasting of a coupled hydrological and NWP (Numerical Weather Prediction) model

  • Nguyen, Hoang Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.194-194
    • /
    • 2017
  • Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.

  • PDF

Establishment and Application of Neuro-Fuzzy Flood Forecasting Model by Linking Takagi-Sugeno Inference with Neural Network (II) : Application and Verification (Takagi-Sugeno 추론기법과 신경망을 연계한 뉴로-퍼지 홍수예측 모형의 구축 및 적용 (II) : 실제 유역에 대한 적용 및 검증)

  • Choi, Seung-Yong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.7
    • /
    • pp.537-551
    • /
    • 2011
  • Based on optimal input data combination selected in the earlier study, Neuro-Fuzzy flood forecasting model linked Takagi-Sugeno fuzzy inference theory with neural network in Wangsukcheon and Gabcheon is established. The established model was applied to Wangsukcheon and Gabcheon and water levels for lead time of 0.5 hr, 1 hr, 1.5 hr, 2.0 hr, 2.5 hr, 3.0 hr are forecasted. For the verification of the model, the comparisons between forecasting floods and observation data are presented. The forecasted results have shown good agreements with observed data. Additionally to evaluate quantitatively for applicability of the model, various statistical errors such as Root Mean Square Error are calculated. As a result of the flood forecasting can be simulated successfully without large errors in all statistical error. This study can greatly contribute to the construction of a high accuracy flood information system that secure lead time in medium and small streams.

Predictability Experiments of Fog and Visibility in Local Airports over Korea using the WRF Model

  • Bang, Cheol-Han;Lee, Ji-Woo;Hong, Song-You
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E2
    • /
    • pp.92-101
    • /
    • 2008
  • The objective of this study is to evaluate and improve the capability of the Weather Research and Forecasting (WRF) model in simulating fog and visibility in local airports over Korea. The WRF model system is statistically evaluated for the 48-fog cases over Korea from 2003 to 2006. Based on the 4-yr evaluations, attempts are made to improve the simulation skill of fog and visibility over Korea by revising the statistical coefficients in the visibility algorithms of the WRF model. A comparison of four existing visibility algorithms in the WRF model shows that uncertainties in the visibility algorithms include additional degree of freedom in accuracy of numerical fog forecasts over Korea. A revised statistical algorithm using a linear-regression between the observed visibility and simulated hydrometeors and humidity near the surface exhibits overall improvement in the visibility forecasts.

The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.497-506
    • /
    • 2019
  • Forecasting the U.S. employment level is made using machine learning methods of the artificial neural network: deep neural network, long short term memory (LSTM), gated recurrent unit (GRU). We consider the big data of the federal reserve economic data among which 105 important macroeconomic variables chosen by McCracken and Ng (Journal of Business and Economic Statistics, 34, 574-589, 2016) are considered as predictors. We investigate the influence of the two statistical issues of the dimension reduction and time series differencing on the machine learning forecast. An out-of-sample forecast comparison shows that (LSTM, GRU) with differencing performs better than the autoregressive model and the dimension reduction improves long-term forecasts and some short-term forecasts.

Cash flow Forecasting in Construction Industry Using Soft Computing Approach

  • Kumar, V.S.S.;Venugopal, M.;Vikram, B.
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.502-506
    • /
    • 2013
  • The cash flow forecasting is normally done by contractors in construction industry at early stages of the project for contractual decisions. The decision making in such situations involve uncertainty about future cash flows and assessment of working capital requirements gains more importance in projects constrained by cash. The traditional approach to assess the working capital requirements is deterministic in and neglects the uncertainty. This paper presents an alternate approach to assessment of working capital requirements for contractor based on fuzzy set theory by considering the uncertainty and ambiguity involved at payment periods. Statistical methods are used to deal with the uncertainty for working capital curves. Membership functions of the fuzzy sets are developed based on these statistical measures. Advantage of fuzzy peak working capital requirements is demonstrated using peak working capital requirements curves. Fuzzy peak working capital requirements curves are compared with deterministic curves and the results are analyzed. Fuzzy weighted average methodology is proposed for the assessment of peak working capital requirements.

  • PDF

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

Investigation on the Performance of the Forecasting Model in University Foodservice (대학 급식소의 식수예측 기법 운영 현황)

  • 정라나;양일선;백승희
    • Journal of Nutrition and Health
    • /
    • v.36 no.9
    • /
    • pp.966-973
    • /
    • 2003
  • The purpose of this study was to investigate the utilization level of forecasting methods in contract foodservice management companies. Questionnaires were distributed and collected from 30 foodservice management companies contracted with universities and 49 university foodservices in Seoul and Kyungki area. Statistical data analysis was performed using SPSS/WIN 10.0 based on the production records of Yonsei University foodservices and the weather reports from a meteorological observatory. The results of this study were as follows: 1) The objectives of the fore-casting systems were identified as saving costs through eliminating the leftover, meeting the customer demands, and improving efficiency in food preparation.2) All of the university foodservices were already performing the forecasting methods but in foodservice management companies as a whole,89.7 percents were applying the method and only 55.2 percents had the separate forecasting department. 3) A large number of foodservice staffs in the head office (65.5%) answered that they often utilized intuitive estimates based on the past experiences and records for forecasting while 65.3% managing staffs in the university foodservices answered the same.4) Both in the head office and university foodservices, actual number of meals served were recorded. In the head office, mostly estimated numbers and actual numbers of meals were recorded while estimated, prepared, and actual numbers of meals served were recorded for most of the cases in university foodservices. 5) The primary factors considered for forecasting were the actual production records for the last month, the customer preference for the selected menu items, and the specific day of the week.

A Study on Statistical Forecasting Models of PM10 in Pohang Region by the Variable Transformation (변수변환을 통한 포항지역 미세먼지의 통계적 예보모형에 관한 연구)

  • Lee, Yung-Seop;Kim, Hyun-Goo;Park, Jong-Seok;Kim, Hee-Kyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.614-626
    • /
    • 2006
  • Using the data of three environmental monitoring sites in Pohang area(KME112, KME113, and KME114), statistical forecasting models of the daily maximum and mean values of PM10 have been developed. Since the distributions of the daily maximum and mean PM10 values are skewed, which are similar to the Weibull distribution, these values were log-transformed to increase prediction accuracy by approximating the normal distribution. Three statistical forecasting models, which are regression, neural networks(NN) and support vector regression(SVR), were built using the log-transformed response variables, i.e., log(max(PM10)) or log(mean (PM10)). Also, the forecasting models were validated by the measure of RMSE, CORR, and IOA for the model comparison and accuracy. The improvement rate of IOA before and after the log-transformation in the daily maximum PM10 prediction was 12.7% for the regression and 22.5% for NN. In particular, 42.7% was improved for SVR method. In the case of the daily mean PM10 prediction, IOA value was improved by 5.1% for regression, 6.5% for NN, and 6.3% for SVR method. As a conclusion, SVR method was found to be performed better than the other methods in the point of the model accuracy and fitness views.

Robustness of Bayes forecast to Non-normality

  • Bansal, Ashok K.
    • Journal of the Korean Statistical Society
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 1978
  • Bayesian procedures are in vogue to revise the parameter estimates of the forecasting model in the light of actual time series data. In this paper, we study the Bayes forecast for demand and the risk when (a) 'noise' and (b) mean demand rate in a constant process model have moderately non-normal probability distributions.

  • PDF