• Title/Summary/Keyword: Statistical Analysis Approach

Search Result 1,270, Processing Time 0.033 seconds

Ranking subjects based on paired compositional data with application to age-related hearing loss subtyping

  • Nam, Jin Hyun;Khatiwada, Aastha;Matthews, Lois J.;Schulte, Bradley A.;Dubno, Judy R.;Chung, Dongjun
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.225-239
    • /
    • 2020
  • Analysis approaches for single compositional data are well established; however, effective analysis strategies for paired compositional data remain to be investigated. The current project was motivated by studies of age-related hearing loss (presbyacusis), where subjects are classified into four audiometric phenotypes that need to be ranked within these phenotypes based on their paired compositional data. We address this challenge by formulating this problem as a classification problem and integrating a penalized multinomial logistic regression model with compositional data analysis approaches. We utilize Elastic Net for a penalty function, while considering average, absolute difference, and perturbation operators for compositional data. We applied the proposed approach to the presbyacusis study of 532 subjects with probabilities that each ear of a subject belongs to each of four presbyacusis subtypes. We further investigated the ranking of presbyacusis subjects using the proposed approach based on previous literature. The data analysis results indicate that the proposed approach is effective for ranking subjects based on paired compositional data.

Approximate Life Cycle Assessment of Classified Products using Artificial Neural Network and Statistical Analysis in Conceptual Product Design (개념 설계 단계에서 인공 신경망과 통계적 분석을 이용한 제품군의 근사적 전과정 평가)

  • 박지형;서광규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • In the early phases of the product life cycle, Life Cycle Assessment (LCA) is recently used to support the decision-making fer the conceptual product design and the best alternative can be selected based on its estimated LCA and its benefits. Both the lack of detailed information and time for a full LCA fur a various range of design concepts need the new approach fer the environmental analysis. This paper suggests a novel approximate LCA methodology for the conceptual design stage by grouping products according to their environmental characteristics and by mapping product attributes into impact driver index. The relationship is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then a neural network approach is developed to predict an approximate LCA of grouping products in conceptual design. Trained learning algorithms for the known characteristics of existing products will quickly give the result of LCA for new design products. The training is generalized by using product attributes for an ID in a group as well as another product attributes for another IDs in other groups. The neural network model with back propagation algorithm is used and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give some useful guidelines fer the design of environmentally conscious products in conceptual design phase.

Probabilistic structural damage detection approaches based on structural dynamic response moments

  • Lei, Ying;Yang, Ning;Xia, Dandan
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.207-217
    • /
    • 2017
  • Because of the inevitable uncertainties such as structural parameters, external excitations and measurement noises, the effects of uncertainties should be taken into consideration in structural damage detection. In this paper, two probabilistic structural damage detection approaches are proposed to account for the underlying uncertainties in structural parameters and external excitation. The first approach adopts the statistical moment-based structural damage detection (SMBDD) algorithm together with the sensitivity analysis of the damage vector to the uncertain parameters. The approach takes the advantage of the strength SMBDD, so it is robust to measurement noise. However, it requests the number of measured responses is not less than that of unknown structural parameters. To reduce the number of measurements requested by the SMBDD algorithm, another probabilistic structural damage detection approach is proposed. It is based on the integration of structural damage detection using temporal moments in each time segment of measured response time history with the sensitivity analysis of the damage vector to the uncertain parameters. In both approaches, probability distribution of damage vector is estimated from those of uncertain parameters based on stochastic finite element model updating and probabilistic propagation. By comparing the two probability distribution characteristics for the undamaged and damaged models, probability of damage existence and damage extent at structural element level can be detected. Some numerical examples are used to demonstrate the performances of the two proposed approaches, respectively.

Influence Measures for a Test Statistic on Independence of Two Random Vectors

  • Jung Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.635-642
    • /
    • 2005
  • In statistical diagnostics a large number of influence measures have been proposed for identifying outliers and influential observations. However it seems to be few accounts of the influence diagnostics on test statistics. We study influence analysis on the likelihood ratio test statistic whether the two sets of variables are uncorrelated with one another or not. The influence of observations is measured using the case-deletion approach, the influence function. We compared the proposed influence measures through two illustrative examples.

Tree-structured Classification based on Variable Splitting

  • Ahn, Sung-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.74-88
    • /
    • 1995
  • This article introduces a unified method of choosing the most explanatory and significant multiway partitions for classification tree design and analysis. The method is derived on the impurity reduction (IR) measure of divergence, which is proposed to extend the proportional-reduction-in-error (PRE) measure in the decision-theory context. For the method derivation, the IR measure is analyzed to characterize its statistical properties which are used to consistently handle the subjects of feature formation, feature selection, and feature deletion required in the associated classification tree construction. A numerical example is considered to illustrate the proposed approach.

  • PDF

Analysis of various statistical techniques used in the articles published during last 19 years in The Journal of Korean Acupuncture & Moxibusition Society (침구학회지 논문에 응용된 통계방식에 관한 연구 -1984 창간호부터 2002년 19권 6호까지 19년간-)

  • Lee, Seung-deok
    • Journal of Acupuncture Research
    • /
    • v.20 no.1
    • /
    • pp.144-158
    • /
    • 2003
  • This study was carried out to investigate what kinds of statistical techniques have been used to analyze data from oriental medicine research, For study, 551 original articles which used statistical techniques in their data analysis were selected form the articles published in The journal of Korean Acupuncture & Moxibustion Society(JKAMS) between 1984 to 2002. among them, 122 articles used descriptive statistics while 429 articles used inferential statistics for data analysis. For that 429 articles, t-test (189 articles), analysis fo variance (111 articles), chi-square test (14 articles), correlation (10 articles), regression analysis (4 articles), factor analysis(5 articles), or nonparametric test (23 articles) were chose to analyze the data. Nonparametric approach has substantial power in case data do not meet the assumption of normality. This method is not only easy to use ut also provides measures of the statistical variation of nominal and ordinal scale. This study shows that more and more recent papers use nonparametric test compared to the old articles. nine different statistical software or packages (SAS, SPSS, Statview, Minitab, Sigma plot, ISP, Graphpad prism, Excel, Access) have been used in the articles published JKMAS. High level statistical techniques such as SAS, SPSS, and Statview are user friendly and used most for acupuncture and Moxibustion research. Including tables and plots in an article facilitates understanding family process data from a descriptive standpoint, minimized erroneous statistical conclusions, and clarifies theoretically important relationships among variables. Table and plots have been used 500 and 233 articles, respectively. A computer procedure is proposed and illustrated with statistical packages using SAS, SPSS, Statview and ISP.

  • PDF

A Level II reliability approach to rock slope stability (암반사면 안정성에 대한 Level II 신뢰성 해석 연구)

  • Park, Hyuck-Jin;Kim, Jong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.319-326
    • /
    • 2004
  • Uncertainty is inevitably involved in rock slope engineering since the rock masses are formed by natural process and subsequently the geotechnical characteristics of rock masses cannot be exactly obtained. Therefore the reliability analysis method has been suggested to deal properly with uncertainty. The reliability analysis method can be divided into level I, II and III on the basis of the approach for consideration of random variable and probability density function of reliability function. The level II approach, which is focused in this study, assumes the probability density function of random variables as normal distribution and evaluates the probability of failure with statistical moments such as mean and standard deviation. This method has the advantage that can be used the problem which the Monte Carlo simulation approach cannot be applied since the complete information on the random variables are not available. In this study, the analysis results of level II reliability approach compared with the analysis results of level III approach to verify the appropriateness of the level II approach. In addition, the results are compared with the results of the deterministic analysis.

  • PDF

A Statistical Approach to Analysis of Saccadic Eye Movements (Saccadic 안구운동 해석에 대한 통계학적인 접근)

  • Kim, Nam-Gyun;Kim, Bu-Gil
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.289-292
    • /
    • 1989
  • In this study we propose an approach based on statistical method which use the whole of saccades instead of using a few points of saccades in the quantitative analyse saccades. We computed statistical parameters such as mean velocity, quadratic mean velocity, standard duration, skewness of saccades velocity, flattness factor of saccades velocity, and mean delay by considering eye velocity as a probability density function. The results abtained are the following as ; This parameters showed the same trend like that of the main sequence. They were not biased by the systematic errors due to the arbitrary threshold. They were also less sensitive to noise, which was tested through the model simulation. So they are expected to provide a more comprehensive quantitative description of the dynamic properties of saccade in the diagnostic field.

  • PDF

Optimization sensor placement of marine platforms using modified ECOMAC approach

  • Vosoughifar, Hamidreza;Yaghoubi, Ali;Khorani, Milad;Biranvand, Pooya;Hosseininejad, Seyedehzeinab
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.587-599
    • /
    • 2021
  • The modified-ECOMAC approach to monitor and investigate health of structure in marine platforms was evaluated in this research. The material properties of structure were defined based on the real platform located in Persian Gulf. The nonlinear time-history analyses were undertaken using the marine natural waves. The modified-ECOMAC approach was designed to act as the solution of the best sensor placement according to structural dynamic behavior of structure. This novel method uses nonlinear time-history analysis results as an exact seismic response despite the common COMAC algorithms utilize the eigenvalue responses. The processes of modified-ECOMAC criteria were designed and developed by author of this paper as a toolbox of Matlab. The Results show that utilizing an efficient ECOMAC method in SHM process leads to detecting the critical weak points of sensitive marine platforms to make better decision about them. The statistical results indicate that considering modified ECOMAC based on seismic waves analysis has an acceptable accuracy on identify the sensor location. The average of statistical comparison of COMAC and ECOMAC via modal and integrated analysis, had a high MAE of 0.052 and RSME of 0.057 and small R2 of 0.504, so there is significant difference between them.

Change point analysis in Bitcoin return series : a robust approach

  • Song, Junmo;Kang, Jiwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.5
    • /
    • pp.511-520
    • /
    • 2021
  • Over the last decade, Bitcoin has attracted a great deal of public interest and Bitcoin market has grown rapidly. One of the main characteristics of the market is that it often undergoes some events or incidents that cause outlying observations. To obtain reliable results in the statistical analysis of Bitcoin data, these outlying observations need to be carefully treated. In this study, we are interested in change point analysis for Bitcoin return series having such outlying observations. Since these outlying observations can affect change point analysis undesirably, we use a robust test for parameter change to locate change points. We report some significant change points that are not detected by the existing tests and demonstrate that the model allowing for parameter changes is better fitted to the data. Finally, we show that the model with parameter change can improve the forecasting performance of Value-at-Risk.