• Title/Summary/Keyword: Stationkeeping

Search Result 14, Processing Time 0.019 seconds

Modeling and Controller Design for Attitude Control of a Moving Satellite (이동하는 위성의 자세제어를 위한 모델링 및 제어기 설계)

  • Lee, Woo-Seung;Park, Chong-Kug
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.1
    • /
    • pp.19-29
    • /
    • 2000
  • Because the previous simulation tool for attitude control of satellite was designed for the modeling of rigid body and PD controller, the attitude error can be made more than the limitation value for keeping for communication link, and then the communication link can be lost at moving of satellite. So, for rapid attitude restoration and design of stable and modernized controller, the modelling of rigid body and flexible body structure for moving GEO and LEO satellites were performed. Also the minimum time controller is designed for the rapid restoration of attitude error at communication broken and to minimize the disconnection period from ground communication system during the satellite stationkeeping. The linear regulator is designed using the space state vector that is better than accuracy and stability of PD controller. Firstly the simulation was performed for comparison of the rigid and stability of PD controller. Firstly the simulation was performed for comparison of the rigid and flexible models using PD controller and the case of the pitch angle changing by ground command, and the case of the periodic north-south stationkeeping are performed for the analysis of response characteristics of each controller when the attitude is changed. As a result, the flexible body model represents more sililar results of real situation than the rigid body model. The minimum time controller can restore 7 times rapidly than PD controller for its lost attitude. The linear regulator has several merits for capability of adaptation against the external disturbance, stability and response time. In future, we can check the estimated results using this satellite model and controller for real operation. Futhermore the development of new controller and training can be supported.

  • PDF

Ground Software Validation Test for Wheel Off-loading of COMS (통신해양기상위성의 휠오프로딩 지상국 소프트웨어 검증시험)

  • Park, Young-Woong;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • There are two main software in COMS ground station at the normal mode operation - stationkeeping and wheel off-loading. In this paper, ground software validation test for wheel off-loading is summarized and described. The wheel off-loading was performed the design change from E3000 heritage and analyzed. The wheel off-loading of ground software has two part; one is wheel off-loading management for parameters change at the thruster set switching time and the other is wheel off-loading set-point being sent to satellite for the reference momentum.

COMS Operation Design to maintain Image Quality of Optical Payloads (탑재체 영상품질 유지를 위한 통신해양기상위성의 운용설계)

  • Park, Bong-Kyu;Yang, Koon-Ho;Choi, Seong-Bong
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.87-95
    • /
    • 2007
  • The ocean and meteorological payloads of COMS are concerned to experience degration of image quality due to the disturbance induced by the motion of moving parts of the payloads. And thruster firings for stationkeeping and wheel offloading are expected to degrade the image quality of the optical payloads. In case of COMS, in order to keep the optical payload free from the mechanical interference from the other payload, the operation design approach has been taken. This paper introduces the operation design of COMS taken to avoid these problems. In order to meet users requirement by avoiding the degradation of image quality, the timeline of optical payloads and housekeeping are optimized, and operational constraints are applied to the mirror motion of the meteorological payload. This paper also introduces the results of time budget analysis performed to validate the operation design.

  • PDF

An Adaptive Learning Controller for Underwater Vehicle with Thruster Dynamics (추진기의 영향을 고려한 무인잠수정의 적응학습제어)

  • 이원창
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.4
    • /
    • pp.290-297
    • /
    • 1997
  • Underwater robotic vehicles(URVs) are used for various work assignments such as pipe-lining, inspection, data collection, drill support, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc. As the use of such vehicles increases the development of vehicles having greater autonomy becomes highly desirable. The vehicle control system is one of the most critic vehicle subsystems to increase autonomy of the vehicle. The vehicle dynamics is nonlinear and time-varying. Hydrodynamic coefficients are often difficult to accurately estimate. It was also observed by experiments that the effect of electrically powered thruster dynamics on the vehicle become significant at low speed or stationkeeping. The conventional linear controller with fixed gains based on the simplified vehicle dynamics, such as PID, may not be able to handle these properties and result in poor performance. Therefore, it is desirable to have a control system with the capability of learning and adapting to the changes in the vehicle dynamics and operating parameters and providing desired performance. This paper presents an adaptive and learning control system which estimates a new set of parameters defined as combinations of unknown bounded constants of system parameter matrices, rather than system parameters. The control system is described with the proof of stability and the effect of unmodeled thruster dynamics on a single thruster vehicle system is also investigated.

  • PDF