• Title/Summary/Keyword: Stationary State

Search Result 344, Processing Time 0.026 seconds

Possibility of Fishery in Offshore Wind Farms (해상풍력발전단지 내 어업 가능성에 관한 고찰)

  • Jung, Cho-Young;Hwang, Bo-Kyu;Kim, Sung-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.535-541
    • /
    • 2019
  • The purpose of this study was to investigate the possibility of fishery in offshore wind farms and evaluate the risk linked to the presence of turbines and submarine cables in these areas. With this objective, we studied an offshore wind farm in the Southwest Sea and the current state of vessels in the surrounding National Fishing Port. The risk assessment criteria for 22 fishing gears and methods were set by referring to the fishing boats; thereafter, the risk was assessed by experts. The fishing gears and methods that could be safely operated (i.e., associated with low risk) in the offshore wind farm were: single-line fishing, jigging, and the anchovy lift net. The risk was normal so that it is possible to operate, but the fishing gears and methods that need attention are: the set long line, drifting long line, troll line, squid rip hook, octopus pot, webfoot octopus pot, coastal fish pot, stow net on stake, winged stow net, stationary gill net, and drift gill net. Moreover, the fishing gears and methods difficult to operate in the of shore wind farm (i.e., associated with high risk) were: the dredge, beam trawl, and purse seine. Finally, those associated with very high risk and that should not be allowed in offshore wind farms were: the stow net, anchovy drag net, otter trawl, Danish seine, and bottom pair trawl.

Assessment of Effect of Pulmonary Rehabilitation on Skeletal Muscle Metabolism by $^{31}P$ Magnetic Resonance Spectroscopy (호흡재활치료 전후 $^{31}P$ 자기공명분석법을 이용한 골격근대사의 변화에 관한 연구)

  • Cho, Won-Kyung;Kim, Dong-Soon;Choe, Kang-Hyeon;Park, Young-Joo;Lim, Tae-Hwan;Shim, Tae-Sun;Lim, Chae-Man;Lee, Sang-Do;Koh, Youn-Suck;Kim, Woo-Sung;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.5
    • /
    • pp.1040-1050
    • /
    • 1997
  • Pulmonary rehabilitation has been known to improve dyspnea and exercise tolerance in patients with chronic lung disease, although it does not improve pulmonary function. The mechanism of this improvement is not clearly explained till now; however some authors suggested that the improvement in the skeletal muscle metabolism after the rehabilitation could be a possible mechanism. The metabolc changes in skeletal muscle in patients with COPD are characterized by impaired oxidative phosphorylation which causes early activation of anaerobic glycolysis and excess lactate production with exercise. In order to evaluate the change in the skeletal muscle metabolism as a possible cause of the improvement in the exercise tolerance after the rehabilitation, noninvasive $^{31}P$ magnetic resonance spectroscopy(MRS) of the forearm flexor muscle was performed before and after the exercise training in nine patients with chronic lung disease who have undertaken intensive pulmonary rehabilitation for 6 weeks. 31p MRS was studied during the sustained isometric contraction of the dominant forearm flexor muscles up to the exhaustion state and the recovery period. Maximal voluntary contraction(MVC) force of the muscle was measured before the isometric exercise, and then 30% of MVC force was constantly loaded to each patient during the isometric exercise. After the exercise training, exercise endurance of upper and lower extremities and 6 minute walking distance were significantly increased(p<0.05). There were no differences of baseline intracellular pH (pHi) and inorganic phosphate/phosphocreatine(Pi/PCr). After rehabilitation pHi at the exercise and the exhaustion state showed a significant increase($6.91{\pm}0.1$ to $6.99{\pm}0.1$ and $6.76{\pm}0.2$ to $6.84{\pm}0.2$ respectively, p<0.05). Pi/PCr at the exercise and the recovery rate of pHi and Pi/PCr did not show significant differences. These results suggest that the delayed intracellular acidosis of skeletal muscle may contribute to the improvement of exercise endurance after pulmonary rehabilitation.

  • PDF

A Experimental Study on Exclusion Ability of Riprap into Bypass Pipe (저층수 배사관 내 유입된 사석 배출능력에 대한 연구)

  • Jeong, Seok Il;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.239-246
    • /
    • 2017
  • There are various transversal structures (small dams or drop structures) in median and small streams in Korea. Most of them are concrete structures and it is so hard to exclude low-level water. Unless drainage valves and/or gates would not be installed near bottom of bed, sediment from upstream should be deposited and also contaminants attached to the sediments would devastatingly threaten the water quality and ecosystem. One of countermeasures for such problem is the bypass pipe installed underneath the transversal structure. However, there is still issued whether it would be workable if the gravels and/or stones would roll into and be not excluded. Therefore, in this study, the conditions to exclude the rip stone which enter into the bypass pipe was reviewed. Based on sediment transport phenomenon, the behavior of stones was investigated with the concepts from the critical shear stress of sediment and d'Alembert principle. As final results, the basis condition (${\tau}_c{^*}$) was derived using the Lagrangian description since the stones are in the moving state, not in the stationary state. From hydraulic experiments the relative velocity could be obtained. In order to minimize the scale effect, the extra wide channel of 5.0 m wide and 1.0 m high was constructed and the experimental stones were fully spherical ones. Experimental results showed that the ratio of flow velocity to spherical particle velocity was measured between 0.5 and 0.7, and this result was substituted into the suggested equation to identify the critical condition wether the stones were excluded. Regimes about the exclusion of stone in bypass pipe were divided into three types according to particle Reynolds number ($Re_p$) and dimensionless critical shear force (${\tau}_c{^*}$) - exclusion section, probabilistic exclusion section, no exclusion section. Results from this study would be useful and essential information for bypass pipe design in transveral structures.

Studies on the Production of Intra- and Extra-cellular Lipids by the Strains in the Genus RHODOTORULA (Rhodotorula 속(屬) 균주(菌株)에 의(依)한 세포(細胞) 내외(內外) 지질생산(脂質生産)에 관(關)한 연구(硏究))

  • Park, Sung-Oh
    • Applied Biological Chemistry
    • /
    • v.17 no.2
    • /
    • pp.93-116
    • /
    • 1974
  • A potent intracellular-lipid-producing yeast, Rhodotorula glutinis var. glutinis SW-17, was screened out from a variety of arable soils, compost heaps, and fodders, and two strains of excellent extracellular-lipid-producing yeasts, Rhodotorula glutinis var. glutinis SW-5 and Rhodotorula graminis SW-54, were screened out from the surface of many species of leaves. And then the intra- and extra-cellular lipid productions by those Rhodotorula yeasts were studied. The results were as follows: 1. During the shaking culture of 8 days at $24^{\circ}C$, both the intra- and extra-cellular lipid accumulation started almost at the stationary phase of growth, when the nitrogen source in the medium was a little more than half used up. The intracellular lipid production by Rhodotorula glutinis var. glutinis SW-17 reached 58.42% (w/w) of dried yeast, and the extracellular lipid production by Rhodotorula graminis SW-54 amounted to 2.62g per liter of the medium. 2. After the carbon and nitrogen sources in the medium were almost consumed, if the yeasts were shake-cultured further in a state of starvation, the yeast cells re-utilized the already produced intra- and extra-cellular lipids and the lipids completely disappeared in the medium in about 90 days. 3. The relative concentration of carbon and nitrogen sources in the media greatly influenced both the intra- and extra-cellular lipid production. When the nitrogen source in the medium was almost used up for the growth of yeast, and excess carbon sources were still available, the lipid production vigorously proceeded. As long as the nitrogen source concentration in the medium was high, the lipid production was greatly suppressed. 4. The optimum pH for both the intra- and extra-cellular lipid production by those yeasts was pH 5.0-6.0. 5. The fatty acid components of the intracellular lipid of Rhodotorula glutinis var. glutinis SW-17 were myristic, palmitic, palmitoleic, stearic, oleic, linoleic, and linolenic acids. The largest components of the fatty acids were palmitic acid equivalent to 30-45% of the whole fatty acids and oleic acid equivalent to 35-50%. 6. The fatty acid components of the extracellular lipid of Rhodotorula glutinis var. glutinis SW-5 and Rhodotorula graminis SW-54 were myristic, palmitic, stearic, oleic, linoleic, linolenic, 3-D-hydroxypalmitic, and 3-D-hydroxystearic acids. The largest components of the fatty acids were 3-D-hydroxypalmitic acid equivalent to 22-25% of the acids and 3-D-hydroxystearic acid equivalent to 13-17%. 7. The polyol component of the intracellular lipids was only glycerol, whereas the polyols of extracellular lipids were glycerol, mannitol, xylitol and arabitol.

  • PDF