• Title/Summary/Keyword: Static-GPS

Search Result 122, Processing Time 0.021 seconds

Proposed Test Method for Verification of Survivability Improvement of KASS Augmented Navigation of a Beam-formed GPS Receiver (빔포밍 GPS 위성항법장치의 KASS 보정항법 생존성 향상을 검증하기 위한 시험평가 방법 제안)

  • Junwoo Jung;Hyunhee Won;Daeyoung Park;Seungmin Kang;Jonggyu Go;Seungbok Kwon;Kwi Woo Park;Bongwoo Jo;Woogeun Ahn;Sung Wook Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • The Korea Augmentation Satellite System (KASS) satellite was successfully launched and service is being started. By receiving messages transmitted from the KASS satellite, users can employ the messages to improve positioning accuracy or to verify the integrity of Global Positioning System (GPS). In this paper, we propose a test method for a beam-formed GPS receiver developed to improve the survivability of KASS augmented messages that can enhance positioning accuracy even in an environment with jamming or interfering signals. Through the test method proposed in this paper, quantitative verification is performed for a beam-formed GPS receiver aimed at maintaining the augmented navigation solution to which KASS augmented messages are applied by tracking the KASS signal as much as possible under conditions where the jamming signal strength is gradually increasing. In addition, the proposed test method includes three conditions; first, a static lab test method for repeated verification of functions under the same conditions; second, a static outdoor test method for performance verification in an operating environment of a platform equipped with the beam-formed GPS receiver; and finally, a dynamic lab test method for performance verification of a moving platform equipped with the beam-formed GPS receiver toward a jammer. In this paper, we propose a method for simulating the jamming signal incident direction through the phase delay of an RF cable designed to prevent unintentional jamming signal emission in both lab and outdoor tests, and a method of applying test software for injecting a jamming signal to compare the survivability performance consistently according to the presence or absence of beamforming signal processing. Through the proposed test method, it was verified that the augmented navigation solution could be output for a longer time period when the beamforming signal processing was applied to the KASS satellite signal in the beam-formed GPS receiver.

Accuracy Analysis of Positioning Supplementary Control Point with the Combined GPS/GLONASS and TS (GPS/GLONASS와 TS 결합에 의한 도근점 측위의 정확도 분석)

  • 박운용;곽두호;김용보;백기석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.3
    • /
    • pp.199-207
    • /
    • 2003
  • In the study, the open area keeping a few visible satellites and the urban area covered with the high building, an electric pole were chosen far evaluation of accuracy of satellite positioning. First, suggest the validity of GPS/GLONASS, TS/RTK-GPS, and compared the accuracy with that of the classical surveying method. As a result, In static relative surveying, the difference of between the known cadastral supplementary control station and that of the acquired is 0.000∼.0006m in GPS alone, GPS/GLONASS, and In the RTK-GPS/TS, 0.010∼0.077m on the non-ambiguity fixed solutions in the urban area 0.008∼0.078m in the open area. it proved to be valid because it is within the allowed connecting errors, i.e 12cm on the baseline of loom in l/l,200 cadastral map.

A Base Study on the Accuracy Analysis of GPS Kinematic Surveying of the Long-Baseline According to the Ephmeris (궤도력에 따른 장기선 GPS 이동측량의 정확도 분석에 관한 기초연구)

  • 강준묵;이용욱;박정현
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.2
    • /
    • pp.121-127
    • /
    • 2000
  • Kinematic GPS surveying which can obtain much 3D topographical information through short-time measurement is being utilized mainly in the short baseline less than a few kilometers. Because the decision of position for the long baseline depends on the static GPS surveying which needs long time measurement, the method for measuring the position of long baseline is needed. In this study, the accuracy of the baseline according to the baseline distance, ephemeris, and observation time by GPS surveying is analysed to confirm the application of kinematic GPS surveying for the long baseline. As the result of this, the acquisition of 3D topographical information by GPS surveying in a few minutes will be possible when PDOP is less than 4, and the fast precise ephemeris is used within 60 km. Also, the accuracy is similar to that of final precise ephemeris of IGS. If a lot of studies about the long baseline kinematic GPS surveying are processed, the acquisition of topographical information for various industry including land development will be obtained more efficiently.

  • PDF

REAL-TIME SPATIAL ANALYSIS FOR GPS/GIS-BASED AVL SYSTEM

  • Kim, Kwang-Soo;Kim, Min-Soo;Choi, Hae-Ock;Lee, Jong-Hun
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.194-197
    • /
    • 1999
  • In AVL, GIS analyze the information from the vehicles to provide commercial or other value far user. As spatial analysis functions in GIS make a new valuable information using the vehicle's position and geographic object's location, they perform an important roles to improve the management efficiency of vehicles. Most GIS however are used static data for the spatial analysis, so the research area on AVL used dynamic vehicle location has generated unsuitable result. In this study, we use GPS real time tracking data to perform spatial analysis between moving vehicle and static geographic object. The method proposed in this paper considers the driving direction of vehicle and creates the result which is located in forward of vehicle. In this paper, two spatial analysis functions, near and connectivity, are developed.

  • PDF

GPS Output Signal Processing considering both Correlated/White Measurement Noise for Optimal Navigation Filtering

  • Kim, Do-Myung;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.499-506
    • /
    • 2012
  • In this paper, a dynamic modeling for the velocity and position information of a single frequency stand-alone GPS(Global Positioning System) receiver is described. In static condition, the position error dynamic model is identified as a first/second order transfer function, and the velocity error model is identified as a band-limited Gaussian white noise via non-parametric method of a PSD(Power Spectrum Density) estimation in continuous time domain. A Kalman filter is proposed considering both correlated/white measurements noise based on identified GPS error model. The performance of the proposed Kalman filtering method is verified via numerical simulation.

Application of Rapid Static Method on Minor Control Point Surveying Using the Global Positioning System (GPS측량기를 이용한 고속스테틱법에 의한 공공기준점 측량 및 응용)

  • 최윤수;김경진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.195-206
    • /
    • 1997
  • By this time, in order to measure baseline in a few minutes, we must have used expensive dual frequency receiver. Recently, low-priced single frequency receiver have taken place of dual frequency receiver at short base-line by advancement in software development, improvements in geodetic survey receiver system. In this study, according to the observation time and measurement interval, we analyzed differences of each components of baseline by field experiment and we propose the criterion for the minor control point surveying by single frequency GPS receiver.

  • PDF

Field Test Results of CDGPS Precision Positioning Using Single Frequency, CA Code GPS Receivers (단일주파수 CA코드 GPS 수신기를 이용한 CDGPS 정밀측위실험)

  • Won, Jong-Hoon;Ko, Sun-Jun;Park, Heun-Jun;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2436-2438
    • /
    • 2000
  • In this paper, field test results of a new efficient integer ambiguity resolution algorithm for precision Carrier Differential GPS(CDGPS) positioning are presented. The new algorithm is based on a reconfiguration Kalman filter which is designed to be used for the real-time precise positioning with low cost, single frequency, conventional C/A code GPS receivers. The tests were performed both in static and kinematic environment

  • PDF

Test Results of Dual-Use Wide-Area Differential GPS System for Extending the Operational Coverage

  • Kap Jin Kim;Jae Min Ahn
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.307-314
    • /
    • 2023
  • Wide-Area Differential Global Positioning System (WADGPS) is a system that operates a number of reference stations to provide correction information to improve the accuracy of GPS users, and it is available to service users within the area where the wide-area reference stations are installed. Recently, as positioning information has been used in various applications, the need for WADGPS for precise navigation in long-distance spaced areas where the wide-area reference stations cannot be installed has been raised. This paper tested the user navigation performance outside the wide-area reference stations of the WADGPS system, which serves both GPS Precise Positioning Service (PPS) and Standard Positioning Service (SPS) users. Static and dynamic tests were conducted using vehicles, and as a result, position accuracy improvement through WADGPS was confirmed even at points hundreds of kilometers outside the network area of the wide-area reference stations. Through this, the performance of the PPS/SPS correction system and the possibility of expanding the service area were confirmed.

Real Time Alarm System of Enormous Structure Using RTK GPS (RTK GPS를 이용한 대형구조물의 실시간 경보 시스템)

  • 박운용;송연경;이현우
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.11-19
    • /
    • 2004
  • Such social structures as bridges,, buildings, dams and towers have been transformed by their own load or fundamental ground. They have been behaved by other external causes. These regular or irregular behaviors threaten to do their users safety. Therefore, to monitor the load of the structures or reaction shown by them could help to verify their behaviors. RTK GPS allows the use of a static base station and remote rover unit to allow f3r data collection within several seconds and in real time. It is useful for monitoring the behaviors of massive structures like bridges. In this Study, Among GPS methods, we used RTK GPS to analyze the precision of monitoring and then on the basis of it, we developed a monitoring system using RTK GPS when measured the behavior of main tower of a suspension bridge by using RTK GPS. Comparing a deviation between observation values, X axis was Imm, Y axis was 1mm and Z axis 2.2mm. It turned out that it was possible to monitor and measure structures by RTK GPS.