• Title/Summary/Keyword: Static strength

Search Result 1,625, Processing Time 0.024 seconds

Energy Absorption Characteristics and Optimal Welding Space of Square Hat Type Thin-walled Tube (정사각 모자형 박판튜브의 에너지흡수특성 및 최적 용접간격)

  • Lee, Hyung-Yil;Kim, Bum-Joon;Han, Byoung-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2703-2714
    • /
    • 2002
  • In this work, energy absorption characteristics and optimal welding space of spot-welded square hat type tube are investigated via quasi-static crush experiments and finite element (FE) analyses. A FE model reflecting the crush characteristics is established based on the experimentally observed crush mechanisms of specimens with welding spaces (20, 30 & 45 mm) and (25,40 & 55 mm) respectively for two specimen widths (60, 75 mm). The established FE model is then applied to other crush models of widths (50, 60 & 75 mm) with various welding spaces (20, 25, 30, 40, 45, 55, 75, 150, 300 mm) respectively. We examine the energy absorption characteristics with respect to the welding space for each specimen width. The outcome suggests an optimal spot welding space of square hat type thin-walled tube. Energy absorption is also presented in terms of yield strength of base metal, specimen thickness, width, and mean crushing force of spot-welded square hat type thin-walled tube.

Manufacturing and Mechanical Properties of Epoxy Fibers Spinning using Anhydride and Amine Hardeners (산 무수물계 및 아민계 경화제를 이용한 열경화성 에폭시 섬유 제조 및 물성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.408-413
    • /
    • 2016
  • Commonly-used polymers are manufactured as versatile forms. Furthermore, continuous polymer fibers are recently manufactured using nylon or aramid fiber. One of common epoxy was also used to make polymer fibers. Bisphenol-A type was used as base epoxy whereas amine and anhydride were used as hardeners. Epoxy fibers was cured by stepping up the temperature to maintain the shape of epoxy fiber. Surface energy was measured to confirm the degree of interfacial adhesion by modified static contact angle method. After mechanical properties were measured via fiber tensile test, the evaluation of fiber fracture was proceeded. Tensile strength of epoxy fiber using amine type hardener was higher as 138 MPa than anhydride case as 70 MPa. Fractured surface exhibited different failure patterns at the cross-section.

Pushover Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 정적해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.325-334
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. A pushover analysis of the structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of the semi-rigid connection were adopted for the models. A fiber model was utilized for the moment-curvature relationship of the steel beam and the column, and a three-parameter power model was adopted for the moment-rotation angle of the semi-rigid connection. The top displacement, base-shear force, required ductility for the connection, sequence of the plastic hinge, and design factors such as the overstrength factor, ductility factor, and response modification coefficient were investigated using the pushover analysis of a 2D structure subjected to the equivalent static lateral force of KBC2005. The partial arrangement of the semi-rigid connection was found to have secured higher strength and lateral stiffness than that of the A-Semi frame, and greater ductility than the A-Rigid frame. The TSD connection was found suitable for use for economy and safety in the sample structure.

Structural Behavior of the Reinforced Concrete Filled GFRP Tube (GFRP 보강 철근콘크리트 합성부재의 구조적 거동)

  • Lee, Seung-Sik;Joo, Hyung-Joong;Kang, In-Kyu;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.23 no.4
    • /
    • pp.44-51
    • /
    • 2010
  • Recently, to solve the problems associated with the neutralization and corrosion of reinforced concrete compression members, the structural configurations such as CFFT (Concrete Filled GFRP Tube) and RCFFT (Reinforced Concrete Filled GFRR Tube) have been developed and applied to main members of civil engineering structure. These members can increase structural performance in terms of structural stability, ductility as well as chemical resistance compared with conventional concrete structural members. Many researches in numerous institutions to predict the load carrying capacity of the concrete compression member strengthened with FRP materials have been conducted and they have been suggested an equation for the prediction of the load carrying capacity of the members. Through the review of the research results, it was found that their results are similar each other. Moreover, it was also found that the results are not directly applicable to our specimens since the results are largely depended upon the member configurations. Also, since the accurate design criteria for the RC members strengthened with FRP such as RCFFT have not been established properly, relevant theoretical and experimental investigations must be conducted for the application to the practical structures. In this study, structural behavior of RCFFT was evaluated through compressive and quasi-static flexural tests in order to formulate design criteria for the structural design. In addition, the RCFFT members were also investigated to examine their confinement effect and the equations capable of estimating the compressive ultimate strength and flexural stiffness of the RCFFT members were proposed.

MR Technology to 4T

  • Vaughan, Thomas
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.103-105
    • /
    • 2003
  • After fifteen years of development, Magnetic Resonance (MR) technology for human imaging and spectroscopy is reaching a refined state with FDA approved 3T clinical products from Siemens, GE, and Philips. Broker has cleared CE approval with a 4T system. Varian supports a 4T system platform as well. Shielded magnets are standard at 3T from GE, Oxford, Magnex, and IGC. A shielded 4T whole body magnet is available from Oxford. Stronger switched gradients and dynamic shim coils, desired at any field, areespecially useful at higher static magnetic fields B0. In addition to the higher currents required for higher resolution slice or volume selection afforded by higher SNR, whole body gradient coils will be driven at increasing slew rates to meet the needs of new cardiac applications and other requirements. For example 3T and 4T systems are now being equipped with 2kV, 500A gradient coils and amplifiers capable of generating 4G/cm in 200msec, over a 67+/-cm bore diameter. High field EPI applications require oscillation rates at 1 kHz and higher. To achieve a benchmark 0.2 ppm shim over a 30cm sphere in a high field magnet, at least four stages of shimming need to be considered. 1) A good high field magnet will be built to a homogeneity spec. falling in the range of 100 to 150 ppm over this 30cm spherical "sweet spot" 2) Most modern high field magnets will also have superconducting shim coils capable of finding 1.5 ppm by their adjustment during system installation. 3) Passive ferro-magnetic shimming combined with 4) active, high order room temperature shim coils (as many as five orders are now being recommended) will accomplish 0.2 ppm over the 30cm sphere, and 0.1 ppm over a human brain in even the highest field magnets for human studies. Safety concerns for strong, fast gradients at any B0 field include acoustic noise and peripheral nerve stimulation. One or more of the mechanical decoupling methods may lead to quieter gradients. Patient positioning relative to asymmetric or short gradient coils may limit peripheral nerve stimulation at higher slew rates. Gradient designs combining a short coil for local speed and strength with a longer coil for coverage are being developed for 3T systems. Local gradients give another approach to maximizing performance over a limited region while keeping within the physiologically imposed dB0/dt performance limits.

  • PDF

Study on the Defect Improvement of Fuel Flow Proportioner Install Structure on Aircraft (항공기 연료흐름분배기 장착 구조물 결함개선 연구)

  • Choi, Hyoung Jun;Lee, Jin Won;Choi, Jae Ho;Park, Sung Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.558-567
    • /
    • 2020
  • This study examined the defect characteristics of fuel flow proportioner-mounted structures to analyze the causes of structural defects during aircraft operation. System vibrations and single component vibrations that occur during aircraft operations are usually the cause of structural defects. The fuel flow proportioner causes a defect in the support structure due to the vibration caused by the pressure change caused by the sudden increase in the flow rate. Defects in the support structure of the fuel flow proportioner are not correlated directly with the cracking of the maneuver, and flight time according to aircraft operation analysis is related to the use of A/B. The structural reinforcement configuration was confirmed through static and life analysis of the cracks of the bracket mounted under the fuel flow proportioner for improvement of the defect. An analysis of the reinforcement revealed a minimum structural strength of +0.15. Structural life analysis confirmed that the stress acted on the site under 15Ksi. The fatigue life was confirmed to be more than 7,700 Cycles.

Behaviour of Shear Wall Structures with Energy Dissipation Device in Coupling Beam (연결보에 감쇠장치를 적용한 전단벽식 구조물의 거동특성)

  • Kim, Jin-Sang;Yoon, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Building structures of apartment in korea conventionally adopt shear walls using coupling beams as seismic force-resisting systems. Energy dissipating devices employed the building structures are used instead of the coupling beams in order to increase the seismic performances by providing additional damping and stiffness. This study aims to introduce energy dissipating devices which are preferred in structural system and aims to investigate structural behaviors of shear wall structures employing such devices instead of coupling beams. In order for achieve research objectives, Finite Element Analysis and Nonlinear analysis was carry out. Finite Element Analysis results was correspond with experimental results and this is indicated that the device can provide sufficient additional damping and stiffness into shear wall structures. Throughout nonlinear static analyses, examples structures with the devices can enhance seismic performance of building structures due to their sufficient energy dissipating capacities. Especially, strength and ductility capacities were significantly improved when it is compared with the performance of building structures without the devices. Throughout nonlinear dynamic analyses, it was observed that structural damages can be mitigated due to reduced seismic demands for seismic force-resisting systems. It is especially noted due to the fact that story drifts, accelerations, shear demands are reduced by 15~18%, 20~28% and 15~20%, respectively.

The Effects of Sensorimotor Training on Balance and Muscle Activation During Gait in Older Adults (감각운동훈련이 노인의 균형 및 보행에 미치는 영향)

  • Jeong, Tae-Gyeong;Park, Jeong-Seo;Choi, Jong-Duk;Lee, Ji-Yeun;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.4
    • /
    • pp.29-36
    • /
    • 2011
  • Purpose: The purpose of this study was to evaluate the effect of 6-week sensorimotoor training on balance ability and lower limb muscle activation during gait in older adults. Methods: Twenty-four community-dwelling older adults between 65 and 90 years of age participated in this study. In the older adults of the experimental group (n=12), the sensorimotor training program was performed bare feet. General exercise was performed in the control group (n=12). Then, both groups exercised three times a week for forty minutes over a 6-week period. Balance ability was evaluated by One leg stand (OLS) test for determining the static balance and Timed Up & Go (TUG) test for determining the dynamic balance. In addition, muscle activation of the dominant lower limb tibialis anterior and gastrocnemius medialis muscles were measured by surface EMG to evaluate muscle activation during gait. Results: A significant improvement was seen in the one leg standing (OLS) time after exercise in both the sensorimotor training (SMT) group and general exercise (GE) group (p<0.05) and the change in the SMT group was greater than that in the GE group (p<0.05). A significant reduction was seen in the Timed Up & Go (TUG) test time after exercise in both the SMT group and GE group (p<0.05). Also, a significant increase was seen in muscle activation of tibialis anterior muscle after exercise in the SMT group (p<0.05), but no such significant increase was seen in the GE group (p>0.05). Conclusion: These results suggest that sensorimotor training improves the balance in older adults and has a more positive effect on muscular strength and gait. Sensorimotor training provided a variance of training environment and COG exercise of the body is thought to be a more effective exercise program that improves balance and gait ability in older adults.

An Ergonomic Analysis for Heavy Manual Material Handling Jobs by Fire Fighters (소방대원의 중량물작업에 대한 인간공학적 분석)

  • Im, Su-Jung;Park, Jong-Tae;Choi, Seo-Yeon;Park, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.85-93
    • /
    • 2013
  • Modern fire fighting jobs have been expanded to include areas of rescue, emergency medical service as well as conventional fire suppression, so that load for fire fighting jobs has been increased. Specifically, musculoskeletal disorders (MSDs) such as low back injury have been considered as one of major industrial hazards in heavy manual material handling during fire fighting jobs. This study tried to evaluate risk levels and to prepare background for reducing risk levels associated with heavy manual material handling during fire fighting jobs. This study applied two major tools in evaluating heavy manual material handling jobs which were NLE (NIOSH Lifting Equation) and 3DSSPP (3D Static Strength Prediction Program). A risk index in terms of heavy manual material handling during fire fighting jobs was identified. This index consisted of seven risk levels ranged from nine points (the first level) to three points (the seventh level). There was no job associated with the first level (the highest risk level) of index. There was only one job (life saving job) belonging to the second level (the second highest risk level) of index. The third level had jobs such as usage of destruction equipment and lifting patient. A total of basic eighteen jobs was categorized into six different levels (2nd-7th levels) of index. The outcome of the study could provide a good basis for conducting job intervention, preparing good equipment and developing good education program in order to prevent and reduce MSDs including low back injury of fire fighting jobs.

Performance Improvement of Overpass Bridge by Weight Reduction (고가교 경량화에 따른 성능개선)

  • Kim, Sung Bae;Nam, Sang Hyeok;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.51-60
    • /
    • 2011
  • In this study, structural safety capacity analysis of the overpass railway bridge between Konkuk Univ. and Guui station railroad has been performed. The overpass is expected to have suffered durability reduction by deterioration. The weight reduction of the overpass has been implemented to prevent further durability reduction and to improve performance capacity. To reduce the weight, 3 procedures of replacing concrete soundproofing wall to light-weight soundproofing wall, replacing gravel ballast to concrete ballast, and reducing the weight of trough have been performed. The analysis of static/dynamic behaviors and improved capacity of the light-weighted overpass bridge has been performed. The structural safety verification of the improved structure has been implemented by using rating factors of load carrying capacity of PSC I girder. The results have shown that the deflection has been reduced by 2.6mm and tensile strength has been improved by 1.07MPa, which indicate that the structural capacity has effectively been improved. Also, the natural frequency has improved by approximately 30% where vibration reduction and dynamic behavior improvement have been achieved. Moreover, in the rating factor evaluation based on analysis and test results, an improvement from 1.82 to 1.93 has been observed. Therefore, weight reduction method for the overpass is effective considering overall results.