• Title/Summary/Keyword: Static strength

Search Result 1,625, Processing Time 0.035 seconds

FRACTURE RESISTANCE OF THE THREE TYPES OF UNDERMINED CAVITY FILLED WITH COMPOSITE RESIN (복합 레진으로 수복된 세 가지 첨와형태 와동의 파절 저항성에 관한 연구)

  • Choi, Hoon-Soo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • It was reported that esthetic composite resin restoration reinforces the strength of remaining tooth structure with preserving the natural tooth structure. However, it is unknown how much the strength would be recovered. The purpose of this study was to compare the fracture resistance of three types of undermined cavity filled with composite resin with that of non-cavitated natural tooth. Forty sound upper molars were allocated randomly into four groups of 10 teeth. After flattening occlusal enamel, undermined cavities were prepared in thirty teeth to make three types of specimens with various thickness of occlusal structure (Group $1{\sim}3$). All the cavity have the 5 mm width mesiodistally and 7 mm depth bucco-lingually. Another natural 10 teeth (Group 4) were used as a control group. Teeth in group 1 have remaining occlusal structure about 1 mm thickness, which was composed of mainly enamel and small amount of dentin. In Group 2, remained thickness was about 1.5 mm, including 0.5 mm thickness dentin. In Group 3, thickness was about 2.0 mm, including 1 mm thickness dentin. Every effort was made to keep the remaining dentin thickness about 0.5 mm from the pulp space in cavitated groups. All the thickness was evaluated with radiographic Length Analyzer program. After acid etching with 37% phosphoric acid, one-bottle adhesive (Single $Bond^{TM}$, 3M/ESPE, USA) was applied following the manufacturer's recommendation and cavities were incrementally filled with hybrid composite resin (Filtek $Z-250^{TM}$, 3M/ESPE, USA). Teeth were stored in distilled water for one day at room temperature, after then, they were finished and polished with Sof-Lex system. All specimens were embedded in acrylic resin and static load was applied to the specimens with a 3 mm diameter stainless steel rod in an Universal testing machine and cross-head speed was 1 mm/min. Maximum load in case of fracture was recorded for each specimen. The data were statistically analyzed using one-way analysis of variance (ANOVA) and a Tukey test at the 95% confidence level. The results were as follows: 1. Fracture resistance of the undermined cavity filled with composite resin was about 75% of the natural tooth. 2. No significant difference in fracture loads of composite resin restoration was found among the three types of cavitated groups. Within the limits of this study, it can be concluded the fracture resistance of the undermined cavity filled with composite resin was lower than that of natural teeth, however remaining tooth structure may be supported and saved by the reinforcement with adhesive restoration, even if that portion consists of mainly enamel and a little dentin structure.

The Effect of Exercise Program for Prevention of Falling on Physical Fitness, Posture and Fall Prevention Self-Efficacy for Elderly Women (넘어짐 예방 운동이 여성노인의 체력, 자세, 낙상효능감에 미치는 영향)

  • Son, Nam Jeong;Yi, Kyung Ock;An, Ju Yeun
    • 한국노년학
    • /
    • v.37 no.1
    • /
    • pp.237-250
    • /
    • 2017
  • The purpose of this study is to analyze the effects of exercise program for prevention of falling on physical fitness, posture and fall prevention self-efficacy for elderly women. 30 females above the age of 65 were subjects for this study. Over an twelve week period, 14women in the experimental group performed exercise 2 times a week for 60 minutes per session. 16women in the control group didn't participate in the exercise program. The independent variable was a exercise program for prevention of falling. Dependent variables were physical fitness, posture and fall prevention self-efficacy. Prevention of falling exercise program is consisted of an elastic band using exercise and Korean dance movement exercise. Physical fitness consisted of grip strength, upper and lower body endurance, cardiovascular endurance, flexibility, balance, coordination. The posture was measured the static posture when standing, using a high-resolution camera, body style to automatically measure the distance and angle(M-zen, Korea). Posture was measured in both the coronal and sagittal plane via reference board. Fall prevention self-efficacy was measured via questionnaire using the Korea Falls Self-Efficacy Scale (FES-K). The physical fitness, posture and fall prevention self-efficacy were measured twice with pre and post exercise, and the difference between groups with Wilcox signed rank test, and the group-specific post verification was carried out with U-validated methods (Mann Whitney U test). Statistical significance level was verified by setting the p<.05. Lower body endurance, cardiovascular endurance, flexibility, balance and coordination significantly increased in the experimental group. The control group was no significant increase in physical fitness variables. shoulder slope angle, pelvic slope angle(coronal/sagittal), leg length difference, scapular inferior angle and left/right calcaneus angle significantly decreased in the experimental group. Both the experimental group and control group were no significant increase in fall prevention self efficacy. The prevention of falling exercise program for elderly women indicated the positive changes in physical fitness(except grip strength) and posture(except upper body slope). However, there are no significant differences of falling prevention self-efficacy between the both group. Thus, the prevention of falling exercise program for the elderly has been proved that it is highly efficient on improving physical fitness and posture proofreading. However, we still need to consider supplement exercise for grip strength and upper body slope.

The Effects of Musculoskeletal Disorder Prevention Exercise Program Considering Agricultural Work Posture (농작업 자세를 고려한 근골격계 질환 예방 운동프로그램의 효과)

  • Park, So-Yeon;Kim, Jin-Kyung
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Objective : This study investigates the impact of the musculoskeletal disorder prevention exercise program designed on the basis of agricultural work posture on the balance ability, Oswestry Disability level, and Psychosocial stress of participants from one rural village in Chungnam area. Method : The exercise program was provided to 21 farmers with musculoskeletal symptoms living in one village in Chungnam area. Such program was performed once a week, 90 minutes per session, for a total of twelve weeks from July 10 to October 11, 2008, and was constructed in a way to increase flexibility and muscular strength, taking agricultural work posture into account. The balance ability, Oswestry Disability Index, and Psychosocial Well-being Index scores were analyzed based on the data of 13 of the farmers who participated in the program for more than eight times and in all of the pre- and post-assessments. Result : Thirteen participants were all women who were 70.55(${\pm}6.78$) years old on average. Most of them were engaged in general dry-filed farming. The parts where they mainly felt the pain were low back(69.2%) and knees(61.5%), and 46.2% responded 'not healthy' to the question on the overall health status. The static balance ability when standing on the right foot significantly increased from the average 9.27(${\pm}5.53$) seconds before intervention to 14.22(${\pm}5.47$) seconds after intervention(p<.05). The Oswestry Disability Index showed a significant change, decreasing from the average 19.84(${\pm}6.89$) seconds to 14.38(${\pm}7.58$) seconds(p<.05). However, there was no change in the Psychosocial Well-being Index. Conclusion : This exercise program that has been conducted for the female farmers who are mainly engaged in the dry-filed farming has contributed to the improvement of their static ability and reduction of their Oswestry Disability Index scores. It is expected that the studies on the effects of the differentiated exercise programs depending on work characteristics will make progress in the future.

  • PDF

Structural Behavior of Slab in the Partial Demolition for the Apartment Remodeling (아파트 리모델링을 위한 부분해체에서 슬래브의 구조적 거동)

  • Choi, Hoon;Joo, Hyung Joong;Kim, Hyo Jin;Yoon, Soon Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.19-30
    • /
    • 2012
  • Due to the fact that the social environment is improved and the urban development is stabilized, the demand of new construction of apartment becomes slowdown. Accordingly, there are many researches to lengthen the service life of the existing apartment through the remodeling and its importance is continuously rising. However, reliable design specifications and guidelines for the design of remodeling with partial demolition are not provided yet in Korea. Specially, in the apartment remodeling, slab collapse accidents take major portion in all accidents that reported by Korean Government. It is very important to prevent intial crack of slab because intial crack could cause severe accident like collapse of all structure in a short period of time. The purpose of this study is to develop structural guidelines that could guarantee the structural safety and serviceability of slab structure and could be adopted in Korean remodeling with partial demolition. There are mainly two components to determine structural behavior of slab structure. One is the shape of slab structure and the other is load which is resisted by the slab structure. In this study, the weight per unit volume of concrete debris and concrete strength are estimated through the analysis of previous researches to recognize the relationship between the shape of slab and load that loaded on the slab. Accordingly, approximately 300 pieces of floor plan are collected and analyzed. The finite element analysis is conducted using these analyzed and estimated results. From the finite element analysis results, the limited stacking height of debris is suggested and the stacking method is also discussed. In addition, to find the relationship between movement of demolition equipment and structural behavior of slab, the static and dynamic loading tests are conducted. From the results of loading tests, the impact factor which will be considered in the remodeling design could be estimated.

Directional Variations in Surface Roughness Determinations (측정방향에 따른 표면 거칠음 정도의 변화 양상)

  • Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.247-260
    • /
    • 1999
  • It was found that surface roughness has a first-order effect on the interface shear strength and accordingly it should be accurately quantified if its role is to be properly understood. Most of the surface roughness parameters are based on the trisector approach (three dimensional parameter) which can provide a good measure of the surface roughness from a static perspective. However, if roughness is to be correlated with a directional sensitive parameter such as interface shear then a two dimensional parameter could be more meaningful if the roughness measurements are made parallel to the direction of shearing. In this paper, alternative roughness parameters which consider the direction of shearing are described. These directional parameters are compared with the existing roughness parameters, and the relationship between these directional and non-directional parameters are investigated. The surface roughness was quantified by using the Optical Profile Microscopy (OPM) method (Dove and Frost, 1996) based on the digital image analysis. The results showed that the various surface roughness parameters measured in this study exhibit similar trend of roughness values, so that, good relationships are obtained between these roughness parameters. As the surface roughness increases, the roughness values measured in trisector coupons are increasing higher than those measured in parallel coupons.

  • PDF

Structural Performance Evaluation of Floating PV Power Generation Structure System (수상 부유식 태양광발전 구조물의 구조적 성능 평가)

  • Choi, Jin Woo;Seo, Su Hong;Joo, Hyung Joong;Yoon, Soon Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1353-1362
    • /
    • 2014
  • In recent years, numerous environmental problems associated with the excessive use of fossil fuel are taking place. For an alternative energy resource, the importance of renewable energy and the demands of facilities to generate renewable energy are continuously rising. To satisfy such demands, a large number of photovoltaic energy generation structures are constructed and planned with large scale. However, because these facility zones are mostly constructed on land, some troubles are occurred such as rising of construction cost due to the cost of land use, environmental devastation, etc. To solve such problems, the floating type photovoltaic energy generation system using FRP members have been developed in Korea. FRP members are recently available in civil engineering applications due to many advantages such as high strength, corrosion resistance, light weight, etc. and they are suitable to fabricate the floating structures because of their material properties. In this study, the analytical and experimental investigations to evaluate the structural performance of floating PV generation structure and SMC FRP vertical member which is used to fabricate the structure were conducted. The static and dynamic performances of floating PV generation structure are evaluated through the FE analysis and the experiment, respectively. Moreover, the structural safety evaluation and buckling analysis of SMC FRP vertical compression member are also conducted by the FE analysis, and the structural behavior of SMC FRP member under compression and pullout is investigated by the experiments. From this study, it was found that the structural system composed of pultruded FRP and SMC FRP members are safe enough to resist externally applied loads.

Development and Application of Cone Penetrometer with Impact Penetration Rod for Evaluation of Track Substructure (철도궤도 하부구조물 평가를 위한 타격식 관입 롯드가 체결된 콘 관입기의 개발 및 적용)

  • Hong, Wontaek;Byun, Yonghoon;Kim, Sangyeob;Choi, Chanyong;Lee, Jongsub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.45-52
    • /
    • 2015
  • To minimize the cost of maintenance, repair and over-design of track substructure, an accurate evaluation of strength and stiffness of the track substructure is necessary. In this study, a cone penetrometer with impact penetration rod (CPI) is developed for the evaluation of track substructure. For applicability test, the chamber and field tests were performed. As the experimental results of the CPI, dynamic cone penetration endex (DCPI), cone tip resistance ($q_c$), friction resistance ($f_s$) and friction ratio (Fr) were obtained. In the chamber test, the experimental results show reasonable values for the simulated track substructure. In the field test, the CPI clearly detects the interface between the ballast and the subgrade. Also, discontinuous layers are detected in the subgrade. It is expected that the developed CPI may be an effective tool for the evaluation of track substructure by evaluating the ballast layer by dynamic penetration and the subgrade by static penetration of the inner rod.

Mechanical Properties of a Lining System under Cyclic Loading Conditions in Underground Lined Rock Cavern for Compressed Air Energy Storage (복공식 지하 압축공기에너지 저장공동의 내압구조에 대한 반복하중의 역학적 영향평가)

  • Cheon, Dae-Sung;Park, Chan;Jung, Yong-Bok;Park, Chul-Whan;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • In a material, micro-cracks can be progressively occurred, propagated and finally lead to failure when it is subjected to cyclic or periodic loading less than its ultimate strength. This phenomenon, fatigue, is usually considered in a metal, alloy and structures under repeated loading conditions. In underground structures, a static creep behavior rather than a dynamic fatigue behavior is mostly considered. However, when compressed air is stored in a rock cavern, an inner pressure is periodically changed due to repeated in- and-out process of compressed air. Therefore mechanical properties of surrounding rock mass and an inner lining system under cyclic loading/unloading conditions should be investigated. In this study, considering an underground lined rock cavern for compressed air energy storage (CAES), the mechanical properties of a lining system, that is, concrete lining and plug under periodic loading/unloading conditions were characterized through cyclic bending tests and shear tests. From these tests, the stability of the plug was evaluated and the S-N line of the concrete lining was obtained.

Optimum Packaging Design of Packaging Tray and Cushion Pad of Korean Pears for Exporting using FEA Simulation (FEA 시뮬레이션 기법을 이용한 수출용 한국 배 포장 트레이 및 완충패드 최적 포장설계)

  • Choi, Dong-Soo;Son, Jae-Yong;Kim, Jin-Se;Kim, Yong-Hoon;Park, Chun-Wan;Jung, Hyun-Mo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.843-852
    • /
    • 2020
  • Among the many packaging materials used in cushion packaging, there is a lack of optimum design for packaging trays and cushion pads used in pear packaging for export and domestic distribution. It causes over-packaging due to excessive material input, and can be solved by applying various parameters needed to optimize the design of the packaging tray and cushion pad considering the packaging material and the number of pears in the box. In the case of a cushion pad for pears, the economic efficiency of material and thickness should be considered. Therefore, it is possible to design a packaging tray and cushion pad depending on eco-friendly packaging materials (PLA, PET) used by applying appropriate design parameters. The static characteristics of the materials used for the packaging of pears were analyzed using FEA (finite element analysis) simulation technique to derive the optimal design parameters. In this study, we analyzed the contact stress and deformation of PET, PLA tray (0.1, 0.5 1.0, 1.5 and 2 mm) and PET foam (2.0, 3 .0 and 4.0 mm) with pears to derive appropriate cushion packaging design factors. The contact stress between the pear and PET foam pad placed on PLA, PET trays were simulated by FEA considering the bioyield strength (192.54±28 kPa) of the pears and safety factor (5) of packaging design, which is the criterion of damage to the pears. For the combination of PET tray and PET foam buffer pad, the thickness of the PET foam is at least 3 mm, the thickness of the PET foam is at least 1.0 mm, the thickness of the foam is at least 2 mm, and if the thickness of the PET tray is at least 1.5 mm, the thickness of the foam is at least 1 mm, suitable for the packaging design. In addition, for the combination of PLA tray and PET foam pad, the thickness of the PET foam was not less than 2 mm if the thickness of the PLA tray was 0.5 mm, and 1 mm or more if the thickness of the PLA tray was not less than 1.0 mm, the thickness of the PET foam was suitable for the packaging design.

Implications of the effects of gravity load for earthquake resistant design of multistory building structurtes (고층건물의 내진설계에 미치는 중력하중의 영향)

  • 이동근;이석용
    • Computational Structural Engineering
    • /
    • v.6 no.3
    • /
    • pp.67-80
    • /
    • 1993
  • This paper presents the results of an analytical study to evaluate the inelastic seismic response characteristics of multistory building structures, the effects of gravity load on the seismic responses and its implications on the earthquake resistant design. Static analyses for incremental lateral force and nonlinear dynamic analyses for earthquake motions were performed to evaluate the seismic response of example multistory building structures. Most of considerations are placed on the distribution of inelastic responses over the height of the structure. When an earthquake occurs, bending moment demand is increased considerably from the top to the bottom of multistory structures, so that differences between bending moment demands and supplies are greater in lower floos of multistory structures. As a result, for building structures designed by the current earthquake resistant design procedure, inelastic deformations for earthquake ground motions do not distribute uniformly over the height of structures and those are induced mainly in bottom floors. In addition, gravity load considerded in design procedure tends to cause much larger damages in lower floors. From the point of view of seismic responses, gravity load affects the initial yield time of griders in earlier stage of strong earthquakes and results in different inelastic responses among the plastic hinges that form in the girders of a same floor. However, gravity load moments at beam ends are gradually reduced and finally fully relaxed after a structure experiences some inelastic excursions as a ground motion is getting stronger. Reduction of gravity load moment results in much increased structural damages in lower floors building structures. The implications of the effects of gravity load for seismic design of multistory building structures are to reduce the contributions of gravity load and to increased those of seismic load in determination of flexual strength for girders and columns.

  • PDF