• Title/Summary/Keyword: Static power

Search Result 1,526, Processing Time 0.028 seconds

Structural Development for Human Powered Aircraft (인간동력항공기 구조 개발)

  • Shin, Jeong Woo;Woo, Dae Hyun;Park, Ill Kyung;Lee, Mu-Hyoung;Lim, Joosup;Park, Sang Wook;Kim, Sung Joon;Ahn, Seok Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2013
  • Human Powered Aircraft (HPA) should be light in weight and have high efficiency because power source of propulsion is human muscles. Airframe structure takes up most of empty weight of aircraft, so weight reduction of structure is very important issue for HPA. In this paper, design/analysis/test procedures for ultra light weight structure of the HPA developed by Korea Aerospace Research Institute (KARI) are explained briefly. Structural design is conducted through case studies on HPA in the USA and Japan. Loads analysis is performed to calculate design loads which is needed for structural design and analysis. Structural analysis is conducted for structure sizing. Static strength test of main wing spar which is primary structure of wing is performed to verify structural integrity.

A Dynamic Scheduling Method for Mobile Broadcasting Using User Profiles (사용자 프로파일을 활용한 모바일 방송에서의 동적 스케줄링)

  • Park, Mee-Hwa;Lee, Yong-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.111-121
    • /
    • 2007
  • In mobile computing environments, data broadcasting is widely used to resolve the problem of limited power and bandwidth of mobile equipments. However, the previous broadcast scheduling methods can be inefficient in the environment where the user requests change dynamically since they are based on static data requests. Moreover, a high-priority user can wait long for infrequently requested data because they never consider the priority of listeners. In this paper, we propose a new broadcast scheduling method that reflects dynamic changes of user requests using user profiles. It also reflects user priorities to reduce the access time of high-priority users. We evaluate the performance of the proposed method through simulation.

  • PDF

The Effects of Spinal Stabilization Exercise using Gravity on patients with Degenerative Disc Disease (중력을 이용한 요부안정화 운동이 만성요통을 가진 노인환자에게 미치는 영향)

  • Kim, Hee-Ra;Kim, Yoon-Shin
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.1
    • /
    • pp.23-31
    • /
    • 2008
  • Purpose: The purpose of this study was finding out the effects of spinal stabilization exercise using Centaur which is a 3D spinal stabilization sports implement on Chronic low back pain patients over 8 weeks. Methods: 30 patients with DDD were observed during the study. Their average age was 66.88years, height was 152.12cm and average weight was 58.91kg, 4 males and 26 females were involved. 8 various investigations were performed and varied values were compared with reinvestigation done after having exercised 8 weeks using 3-D CENTAUR We used VAS(visual analog scale) in order to see the variation of pain intensity, MOI(modified oswestry index) in order to see limitation of daily life. Results: VAS was lessened from 7.57 to 2.63, limitation of routine life(MOS) from 23.48 to 11.30, there were remarkable differences statistically(p<0.05). As a result of muscular investigation for static spinal stabilization by 8 variations of body deflection, muscular strength were all increased and there were signigicant differences statistically(p<0.05). Conclusion: It has turned out that pain and limitation of routine life was lessened, as a result of 8 weeks exercise using CENTAUR, and deep muscular power was increased. Thus it has turned out that 3-D spinal stabilization exercise has an effect on the strengthening spinal muscles and alleviation of their pain for old patients with DDD.

  • PDF

Coherent motion of fluxons in stacked intrinsic Josephson junctions of $Bi_2$$Sr_2$Ca$Cu_2$$O_{8+x}$ single crystals ($Bi_2Sr_2CaCu_2O_{8+x}$ 단결정 선천성 조셉슨 접합에서의 플럭손 결맞음 운동)

  • Doh, Yong-Joo;Chang, Hyun-Sik;Chang, Dong-In;Lee, Hu-Jong;Kim, Jinhee;Kim, Kyu-Tae;Lee, Woo;Choy, Jin-Ho
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.28-30
    • /
    • 2001
  • We studied the flux-flow current-voltage characteristics of microwave-generated fluxons formed in serially stacked intrinsic Josephson junctions fabricated on$ HgI_2$-intercalated $Bi_2$$Sr_2$$CaCu_2$O/8+x/(Bi2212) single crystals. With increasing the irradiation power of 73$\square$76 GHz microwave, the supercurrent branch became resistive and split into multiple sub -branches. Each sub-branch represented a specific mode of collective motion of Josephson fluxons. We also observed similar branch splitting In a mesa prepared on an underdoped Bi2212 single crystal in a static magnetic field.

  • PDF

The natural frequency measurement for a suction pile about the intrusion depth (관입깊이에 따른 석션파일 고유진동수 측정 및 분석)

  • Lee, Jong-Hwa;Kim, Min-Su;Seo, Yoon-Ho;Kim, Bong-Ki;Lee, Ju-Shin;Yu, Mu-Sung;Kwak, Dae-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.495-496
    • /
    • 2014
  • The suction method is the substructure installation using the water pressure difference generated by discharging water inside the pile by the pumping operation, after the intrusion by the self-weights of a large hollow steel pipe or a concrete structure. It is known as the low-noise and low-vibration method against the general pile driven method and eco-friendly, also. Most current design and safety assessment of the support structure and considering only the static load, however, the importance of dynamic behavior becomes magnified as the size of wind power generator increases. This study measures the natural frequency of the suction pile prototype about the penetration depth as a part of basic research and analyzed the interaction between the soil and the structure.

  • PDF

3-D Finite Element Analyses of Steam Generator Tubes Considering the Gap Effects (간극효과를 고려한 증기발생기 전열관의 3차원 유한요소해석)

  • Cho, Young Ki;Park, Jai Hak
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.51-56
    • /
    • 2011
  • Steam generator is one of the main equipments that affect safety and long term operation in nuclear power plants. Fluid flows inside and outside of the steam generator tubes and induces vibration. To prevent the vibration the tubes are supported by AVB (anti vibration bar). When the steam generator tube contact to AVB, it is damaged by the accumulation of wear and corrosion. Therefore studies are required to determine the effects of the gap between the steam generator tube and AVB. In order to obtain the stress and the displacement distributions of the steam generator tube, three dimensional finite element analyses were performed by using the commercial program ANSYS. Using the calculated the stress and the displacement distributions, the static residual strength of the steam generator tube can be evaluated. The results show that the stress and displacement of the steam generator tube increase significantly compared with the results from a zero-gap model.

Dual NLMS Type Feedback Interference Cancellation Method in RF Repeater System (무선 중계기에서의 Dual NLMS 방식 궤한 간섭 제거 방법)

  • Park, Won-Jin;Park, Yong-Seo;Hong, Een-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.91-99
    • /
    • 2011
  • Several repeater systems are used to enhance the cell coverage to location such as shadow and rural areas in mobile systems. But the general RF repeater solutions are not suitable for high power outdoor environment because it has the weakness such as self oscillation problem With adoption of a adaptive digital filter technology, feedback interference cancellation repeater prevents oscillation by detecting and canceling the unwanted feedback signal between transmission and receiver antenna. In this paper, dual NLMS based interference cancellation method is proposed and the step size adaptation can be implemented by the estimation of the feedback channel Doppler frequency characteristics. The performance of the proposed algorithm is quantified via analysis and simulation for the static and multipath fading feedback channels.

Fabrication and Properties of MI Sensor using CoZrNb films (CoZrNb 막을 이용한 MI센서 제작 및 특성)

  • Hur, J.;Kim, Y.H.;Shin, K.H.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.132-135
    • /
    • 2002
  • MI(Magneto-Impedance) sensor which is made by thin films has significantly high detecting sensitivity in weak magnetic field. It also has a merit to be able to build in the low power system. Its structure is simple, which makes it easier to prepare a miniature. In this study, its magnetic permeability and anisotropy field($H_{k}$) as a function of a thickness of sputtered amorphous CoZrNb films with zero-magnetostriction and soft magnetic property are investigated. In order to make a uniaxial anisotropy, film was subjected to the post annealing in a static magnetic field with 1KOe intensity at 250, 300, and $320^{\circ}C$ respectively for 2 hours. Magnetic properties of film are measured by using a MH loop tracer. Its magnetic permeability of a film is measured over the frequency range 1 MHz to 750MHz. And, it was examined on the permeability and impedance to design the MI sensor which acts at 50MHz by thickening a CoZrNb film relatively, and fabricated the MI sensor which acts at the 50MHz.

  • PDF

Versatile robotic platform for structural health monitoring and surveillance

  • Esser, Brian;Huston, Dryver R.
    • Smart Structures and Systems
    • /
    • v.1 no.4
    • /
    • pp.325-338
    • /
    • 2005
  • Utilizing robotic based reconfigurable nodal structural health monitoring systems has many advantages over static or human positioned sensor systems. However, creating a robot capable of traversing a variety of civil infrastructures is a difficult task, as these structures each have unique features and characteristics posing a variety of challenges to the robot design. This paper outlines the design and implementation of a novel robotic platform for deployment on ferromagnetic structures as an enabling structural health monitoring technology. The key feature of this design is the utilization of an attachment device which is an advancement of the common magnetic base found in the machine tool industry. By mechanizing this switchable magnetic circuit and redesigning it for light weight and compactness, it becomes an extremely efficient and robust means of attachment for use in various robotic and structural health monitoring applications. The ability to engage and disengage the magnet as needed, the very low power required to do so, the variety of applicable geometric configurations, and the ability to hold indefinitely once engaged make this device ideally suited for numerous robotic and distributed sensor network applications. Presented here are examples of the mechanized variable force magnets, as well as a prototype robot which has been successfully deployed on a large construction site. Also presented are other applications and future directions of this technology.

Development of 600-MHz 19F-7Li Solid-State NMR Probe for In-Situ Analysis of Lithium Ion Batteries

  • Jeong, Ji-Ho;Park, Yu-Geun;Choi, Sung-Sub;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3253-3256
    • /
    • 2013
  • Lithium is a highly attractive material for high-energy-concentration batteries, since it has low weight and high potential. Rechargeable lithium-ion batteries (LIBs), which have the extremely high gravimetric and volumetric energy densities, are currently the most preferable power sources for future electric vehicles and various portable electronic devices. In order to improve the efficiency and lifetime, new electrode compounds for lithium intercalation or insertion have been investigated for rechargeable batteries. Solid-state nuclear magnetic resonance (NMR) is a very useful tool to investigate the structural changes in electrode materials in actual working lithium-ion batteries. To detect the in-situ microstructural changes of electrode and electrolyte materials, $^7Li-^{19}F$ double-resonance solid-state NMR probe with a static solenoidal coil for a 600-MHz narrow-bore magnet was designed, constructed, and tested successfully.