• Title/Summary/Keyword: Static pile load test

Search Result 135, Processing Time 0.027 seconds

Prediction of Ultimate Load of Drilled Shafts Embedded in Weathered Rock by Extrapolation Method (외삽법을 이용한 풍화암에 근입된 현장타설말뚝의 극한하중 예측)

  • Jung, Sung Jun;Lee, Sang In;Jeon, Jong Woo;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.145-151
    • /
    • 2009
  • In general, a drilled shaft embedded in weathered rock has a large load bearing capacity. Therefore, most of the load tests are performed only up to the load level that confirms the pile design load capacity, and stopped much before the ultimate load of the pile is attained. If a reliable ultimate load value can be extracted from the premature load test data, it will be possible to greatly improve economic efficiency as well as pile design quality. The main purpose of this study is to propose a method for judging the reliability of the ultimate load of piles that is obtained from extrapolated load test data. To this aim, ten static load test data of load-displacement curves were obtained from testing of piles to their failures from 3 different field sites. For each load-displacement curve, loading was assumed as 25%, 50%, 60%, 70%, 80%, and 90% of the actual pile bearing capacity. The limited known data were then extrapolated using the hyperbolic function, and the ultimate capacity was re-determined for each extrapolated data by the Davisson method (1972). Statistical analysis was performed on the reliability of the re-evaluated ultimate loads. The results showed that if the ratio of the maximum-available displacement to the predicted displacement exceeds 0.6, the extrapolated ultimate load may be regarded as reliable, having less than a conservative 20% error on average. The applicability of the proposed method of judgment was also verified with static load test data of driven piles.

Study on the Vertical Pile Capacity of Base-grouted Pile (선단 하부지반 그라우팅된 개단강관말뚝의 연직 지지력에 관한 연구)

  • 정두환;최용규;정성교
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.165-180
    • /
    • 1999
  • Static load tests were performed for open-ended piles, closed-ended piles, piles with grouted toe, and base-grouted piles by using calibration chamber. Then vertical bearing capacities determined from load tests were compared with each other. The stability of base-grouted pile during a simulated seaquake was investigated by changing the penetration depth. Also, static load tests and seaquake tests for 2-piles and 4-piles group were performed. The bearing capacity of the pile grouted inside the toe was 11.2~30.8% less than that of open-ended pile because of reduction of base resistance due to disturbance of base soil under pile toe. The bearing capacity of a base-grouted pile was 23.8~33.9% more than that of an open-ended pile and was similar to that of a closed-ended pile. The bearing capacity of base-grouted group pile was increased ; the bearing capacity of base-grouted 2-piles group increased 14.6~31.8% compared to that of open-ended 2-piles group, and that of base-grouted 4-piles group increased 15.3~22.4% compared to that of open-ended 4-piles group. During the simulated seaquake in deep sea, stability of base-grouted pile was found to be dependent on the pile penetration depth. During seaquake motion, single long base-grouted pile longer than 20m was stable and short base-grouted pile shorter than 12m failed. But relatively long base-grouted pile longer than 12m kept mobility state. Bearing capacity of base-grouted group pile with penetration depth less than 7m was degraded a little bit ; so, base-grouted group pile could maintain mobility condition.

  • PDF

A Study on the Allowable Bearing Capacity of Pile by Driving Formulas (각종 항타공식에 의한 말뚝의 허용지지력 연구)

  • 이진수;장용채;김용걸
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.197-203
    • /
    • 2002
  • The estimation of pile bearing capacity is important since the design details are determined from the result. There are numerous ways of determining the pile design load, but only few of them are chosen in the actual design. According to the recent investigation in Korea, the formulas proposed by Meyerhof based on the SPT N values are most frequently chosen in the design stage. In the study, various static and dynamic formulas have been used in predicting the allowable bearing capacity of a pile. Further, the reliability of these formulas has been verified by comparing the perdicted values with the static and dynamic load test measurements. Also in cases, these methods of pile bearing capacity determination do not take the time effect consideration, the actual allowable load as determined from pile load test indicates severe deviation from the design value. The principle results of this study are summarized as follows : A a result of estimate the reliability in criterion of the Davisson method, in was showed that Terzaghi & Peck > Chin > Meyerhof > Modified Meyerhof method was the most reliable method for the prediction of bearing capacity. Comparisons of the various pile-driving formulas showed that Modified Engineering News was the most reliable method. However, a significant error happened between dynamic bearing capacity equation was judged that uncertainty of hammer efficiency, characteristics of variable , time effect etc... was not considered. As a result of considering time effect increased skin friction capacity higher than end bearing capacity. It was found out that it would be possible to increase the skin friction capacity 1.99 times higher than a driving. As a result of considering 7 day's time effect, it was obtained that Engineering News. Modified Engineering News. Hiley, Danish, Gates, CAPWAP(CAse Pile Wave Analysis Program ) analysis for relation, respectively, $Q_{u(Restrike)}$ $Q_{u(EOID)}$ = 0.971 $t_{0.1}$, 0.968 $t_{0.1}$, 1.192 $t_{0.1}$, 0.88 $t_{0.1}$, 0.889 $t_{0.1}$, 0.966 $t_{0.1}$, 0.889 $t_{0.1}$, 0.966 $t_{0.1}$

  • PDF

Reliability Analysis of Bearing Capacity Equations for Drilled Shafts Socketed in Weathered Rock (풍화암에 근입된 현장타설말뚝 지지력 공식의 신뢰성 분석)

  • Jung, Sung-Jun;Kim, Sung-Ryul;So, Jin-Man;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.85-92
    • /
    • 2007
  • As the use of drilled shafts for foundation of a large size structure increases, the evaluation of the reliable bearing capacity of the pile has become important. The purpose of this study is to verify the reliability of bearing capacity equations for drilled shafts socketed in weathered rock by comparing the bearing capacity values from static load tests with values from bearing capacity equations. In this study, twelve data from static load test were selected from four field sites, and the data of load test and the properties of weathered rock were analyzed. Three methods widely used in practice were selected for analysis, namely the AASHTO method (1996), Carter & Kulhawy method (1988), and FHWA method (1999). The comparison of the bearing capacity values from the bearing capacity equations to those obtained from load tests showed that the Carter & Kulhawy method (1988) was the most reliable in giving conservative design values and smaller COV (Coefficient Of Variation).

Evaluation of Yield Load in Pile Load Tests on Driven Piles (관입말뚝에 대한 연직재하시험시 항복하중의 판정법)

  • 홍원표;심기석
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 1989
  • In pile load tests on end bearing piles, generally, it is not possible to continue loading to the ultimate load. Thus, the concept of yield load has been introduced for determining design loads Iron the pile load test records. The conventional rules to determine the yield load were not available for evaluation on pile load test records obtained in 6 fields nearby westers 8r Southern Coasts in Korea. A new rule 9.as presented to determine easily the yield load, based on investigations on the pile load test records. The yield load of piles is determined at the infiection point on semi-logarithmic coordinates (P-logS), in which load is plotted in normal scale and settlement is plotted in logarithmic scale. This method may not only save much costs and times but also present safe luorking circumstances for pile load tests in field. It was found that the yield load represented the elastic limit of the pile load-settlement behalf.iota. The ultimate load, which is given at 25.4mm settlement on pile head, was 1.5 times of the yield load. The allowable long-term and short-term load capacities were, respectively, 50% and 75% of the yield load. The safety factors to get the allowable pile capacity were obtained as 2.0~4.0 for the equations to predict the static pile capacity.

  • PDF

Design Efficiency Improvement Method Research for High Strength Steel Pipe Pile at Gwangyang Area (광양지역 고강도 강관 항타말뚝의 설계효율 향상 방안 연구)

  • La, SeungMin;Yoo, Hankyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6C
    • /
    • pp.231-240
    • /
    • 2011
  • Various pile load tests were carried out at Gwangyang district for 10 different piles in order to analyze the characteristcs of steel pile using high strength steel and high driving energy. Pile drivability results showed that PHC piles needed highest total blow count even with the shortest pile length and high strength steel pipe piles showed smallest total blow count eventhough driven to a more hard ground condition with longer pile length. Pile dynamic analysis results showed that for PHC pile and general steel pipe pile the allowable pile design load was decided by the allowable material strength but for high strength steel pipe pile the design load can be decided according to the ground bearing capacity. Static load test and load transfer test results showed that the pile design efficiency could be improved over 80% allowing lesser number of piles necessary for a more economical solution. Set-up effects was analyzed and regression equation for the site ground condition was derived. Bearing capacity was checked with widely used design equation and the limitation of current design method and future technology development on this subject is dicussed in this paper.

An Experimental Study on the MSG Reinforcement of Steel Pipe Pile Installed by PRD (MSG공법에 의한 PRD강관말뚝 보강에 관한 사례 연구)

  • Chun, Byungsik;Kang, Heejin;Kong, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.5-12
    • /
    • 2007
  • Mudstone has characteristics that it has high enough strength and stiffness in a dry condition, but the strength and stiffness decrease in a wet condition with groundwater infiltration. The sliding of cut slope frequently encountered in Pohang area has been reported due to the rapid reduction of shear strength in mudstone after being exposed to the air. The study in this paper shows that mudstone having enough strength in a boring stage has lost the strength after installing PRD (percussion rotary drill) steel pipe pile inducing an insufficient bearing capacity. Field test has been performed to investigate the most favorable method for increasing a pile bearing capacity in mudstone with various methods such as MSG (Micro Silica Grouting) around the tip and side of a pile, the perimeter grouting combined with Micro pile reinforcement, and concrete filling after tip reinforcing grouting. MSG has been turned out to be the most favorable method for increasing a pile bearing capacity in mudstone, confirmed by the static load test.

  • PDF

Load Transfer Characteristics and Ultimate Bearing Capacity of PHC Pile in Deep Soft Clay Layer (대심도 연약지반에 근입된 PHC말뚝기초의 하중전이특성 및 극한지지력 산정)

  • Lee, Yonghwa;Kim, Myunghak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • In this study, the analysis of load transition of PHC pile was performed with the static load test, which was driven in deep soft clay layer of MyungJi site in the western area of Pusan. The results of test showed that the range of unit side resistance of pile in sand layer were $7.4t/m^2$ to $23.3t/m^2$ and $6.4t/m^2$ in the soft clay layer, while the unit base resistance was $955t/m^2$ in dense silty sand layer. To select the most reasonable static bearing capacity formular, the field measured values are compared with the calculated ones from the suggested various formular. In the case of side resistance in sand layer, the suggest formular in the Structural Foundation Design Manual by KGS was most reasonable, while in clay layer Railroad Design Manual.

  • PDF

CASE STUDIES ON THE CONSTRUCTION CONTROL OF FILE FOUNDATION BY PILE DRIVING ANALYZER (항타분석기에 의한 말뚝시공관리 사례)

  • 이우진;이인모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.79-86
    • /
    • 1994
  • Two case studies on the application of Pile Driving Analyzer (PDA) are introduced. It is shown that the PDA and CAPWAP are effective tools for the construction control of pile foundations with minimum cost and time. The PDA and CAPWAP techniques are able to evaluate the performace of hammer and driving system: to check the stresses in the pile due to driving: to determine the damage of pile: to predict the ultimate bearing capacity of pile: to estimate the important soil paramaters such as the soil resistance, quake, and damping etc.: and to provide the load - displacement curve from the simulated static load test. Theoretical backgrounds of wave mechanics is briefly reviewed and the methodology of construction control using the PDA is also discussed.

  • PDF

A Study on Bearing Capacity Reinforcement for PHC Pile Foundation Using Post-grouting (그라우팅 기법을 활용한 PHC 파일 기초의 지지력 증강 효과 연구)

  • Yoo, Min-Taek;Lee, Su-Hyung;Kim, Seok-Jung;Choi, Yeong-Tae;Park, Jeongjun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.6
    • /
    • pp.17-25
    • /
    • 2017
  • In this research, post grouting methods were applied on PHC piles, and static load tests were conducted to confirm the effect of post grouting on bearing capacity enhancement of PHC piles. Grouting pressures of 1.9 MPa and 3.5 MPa were applied, and bearing capacities of grouted piles were compared with that of non-grouted pile. From the static load test results, the bearing capacities of grouted piles were about 3 times higher than that of non-grouted pile. In addition, the design efficiency (allowable bearing capacity/nominal bearing capacity) increased from 32% to 97% after post grouting, and the axial stiffness of piles also increased by about 1.3 times per grouting pressure.