• Title/Summary/Keyword: Static modulation

Search Result 72, Processing Time 0.027 seconds

Advanced Static Over-modulation Scheme using Offset Voltages Injection for Simple Implementation and Less Harmonics

  • Lee, Dong-Myung
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.138-145
    • /
    • 2015
  • In this paper, a novel static overmodulation scheme (OVM) for space-vector PWM (SVPWM) is proposed. The proposed static OVM scheme uses the concept of adding offset voltages in linear region as well as overmodulation region to fully utilize DC-link voltage. By employing zero sequence voltage injection, the proposed scheme reduces procedures for achieving SVPWM such as complicated gating time calculation. In addition, this paper proposes a stepwise discontinuous angle movement in high modulation region in order to reduce Total Harmonic Distortion (THD). The validity of the proposed scheme is verified through theoretical analysis and experimental results.

Fast FCS-MPC-Based SVPWM Method to Reduce Switching States of Multilevel Cascaded H-Bridge STATCOMs

  • Wang, Xiuqin;Zhao, Jiwen;Wang, Qunjing;Li, Guoli;Zhang, Maosong
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.244-253
    • /
    • 2019
  • Finite control set model-predictive control (FCS-MPC) has received increasing attentions due to its outstanding dynamic performance. It is being widely used in power converters and multilevel inverters. However, FCS-MPC requires a lot of calculations, especially for multilevel-cascaded H-bridge (CHB) static synchronous compensators (STATCOMs), since it has to take account of all the feasible voltage vectors of inverters. Hence, an improved five-segment space vector pulse width modulation (SVPWM) method based on the non-orthogonal static reference frames is proposed. The proposed SVPWM method has a lower number of switching states and requires fewer computations than the conventional method. As a result, it makes FCS-MPC more efficient for multilevel cascaded H-bridge STATCOMs. The partial cost function is adopted to sequentially solve for the reference current and capacitor voltage. The proposed FCS-MPC method can reduce the calculation burden of the FCS-MPC strategy, and reduce both the switching frequency and power losses. Simulation and experimental results validate the excellent performance of the proposed method when compared with the conventional approach.

Design and Fabrication of Micro SLM for Phase and Amplitude Modulation (위상 및 방향 변조를 위한 초소형 광 변조기의 설계와 제작)

  • Chung, Seok-Whan;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3298-3300
    • /
    • 1999
  • In this paper, a $10{\times}10$ micro SLM array for phase and amplitude modulation of incident light is designed and fabricated using surface micromachining technology. Hidden spring structure is used in order to maximize the fill-factor and minimize diffraction effect at the support posts. Static and dynamic characteristics of designed micro SLM are simulated with ABAQUS and measured with optical measurement system using He-Ne laser and PSD(position sensitive devise).

  • PDF

A scalar MSDD with multiple antenna reception of Differential Space-Time π/2-Shifted BPSK Modulation

  • Kim Jae-Hyung;Hwang Seung-Wook;Kim Jung-Keun;Kim Yong-Jae
    • Journal of Navigation and Port Research
    • /
    • v.30 no.2
    • /
    • pp.167-172
    • /
    • 2006
  • In this paper, the issue of blind detection of Alamouti-type differential space-time (ST) ${\pi}/2$-shifted BPSK modulation in static Rayleigh fading channels is considered. We introduce a novel transformation to the received signal from each receiver antenna such that this binary ST modulation, which has a second-order transmit-diversity, is equivalent to QPSK modulation with second-order receive-diversity. The pre-detection combining of the result of transformation allows us to apply a low complexity detection technique specifically designed for receive-diversity, namely, scalar multiple-symbol differential detection (MSDD). With receiver complexity proportional to the observation window length, our receiver can achieve the performance 1.5dB better than that of conventional differential detection ST and 0.5dB worse than that qf a coherent maximum ratio combining receiver (with differential decoding) approximately.

Exact Bit Error Probability of Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation

  • Kim, Sang-Hyo;Yang, Jae-Dong;No, Jong-Seon
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.253-257
    • /
    • 2008
  • In this paper, the performance of generic orthogonal space-time block codes (OSTBCs) introduced by Alamouti [2], Tarokh [3], and Su and Xia [11] is analyzed. We first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of an OSTBC. Utilizing the ODSEF and the bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon [9], the exact closed-form expressions for the BEP of linear OSTBCs with QAM in quasi-static Rayleigh fading channel are derived. We also derive the exact closed-form of the BEP for some OSTBCs which have at least one message symbol transmitted with unequal power via all transmit antennas.

Sliding Mode Control of a New Wind-Based Isolated Three-Phase Induction Generator System with Constant Frequency and Adjustable Output Voltage

  • Moradian, Mohammadreza;Soltani, Jafar
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.675-684
    • /
    • 2016
  • This paper presents a new stand-alone wind-based induction generator system with constant frequency and adjustable output voltage. The proposed generator consists of a six-phase cage-rotor induction machine with two separate three-phase balanced stator windings and a three-phase space vector pulse width modulation inverter that operates as a static synchronous compensator (STATCOM). The first stator winding is fed by the STATCOM and used to excite the machine while the second stator winding is connected to the generator external load. The main frequency of the STATCOM is determined to be constant and equal to the load-requested frequency. The generator output frequency is independent of the load power demand and its prime mover speed because the frequency of the induced emf in the second stator winding is the same as this constant frequency. A sliding mode control (SMC) is developed to regulate the generator output voltage. A second SMC is used to force the zero active power exchanged between the machine and the STATCOM. Some simulation and experimental results are presented to prove the validity and effectiveness of the proposed generator system.

A Simple Static Overmodulation Scheme using Space Vector PWM Method (공간벡터 PWM을 이용한 간단한 정적 과변조기법)

  • Lee, Dong-Myung;Kim, Jin-Ho;Yang, Hyun-Suk;Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.234-241
    • /
    • 2011
  • This paper proposes a simple static overmodulation strategy that extends the linearity of the inverter output voltage. The proposed method obtains the reference vector having the instantaneous value directly from the modulation index based on the magnitude of fundamental voltage, and has a simplified form of phase command. This method does not need trigonometric functions for calculating the magnitude of the reference vector. The magnitude of reference voltage and holding angle in the overmodulation region corresponding to the modulation index are determined in advance to have the same fundamental voltage magnitude by using the result of Fourier series expansion.

Energy Efficiency for Building Security Application of Adaptive Error Control and Adaptive Modulation (빌딩 보안 어플리케이션의 적응 오류제어와 적응 변조의 에너지 효율에 관한 연구)

  • Long, Bora;Kang, Heau-Jo
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.4
    • /
    • pp.423-429
    • /
    • 2007
  • Since the wireless smart card has played a main role in the identification security application for the building access; this research has its purpose to improve the performance of the smart card system and aims to offer more convenient to user. The contactless cards do not require insertion into a card reader and can work up to centimeters away from the reading device. To be able to cope with this performance the controlling of power consumption through the adaptive modulation and error control is needed. This paper addresses a forward error control (FEC) scheme with the adaptive Reed-Solomon code rate and an M-ary frequency shift keying (M-FSK) modulation scheme with the varying symbol size M over the link. The result of comparing energy efficiencies of adaptive error correction and adaptive modulation to other various static schemes shows to save over 50% of the energy consumption.

  • PDF

Static Overmodulation Strategies of Two Phase Full Bridge Inverter (2상 풀브릿지 인버터의 정적 과변조 기법)

  • Choi, Seung-Cheol;Lee, Byung-Song;Park, Chan-Bae;Mok, Hyung-Soo;Kim, Sang-Hoon;Kim, Young-Ki
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.220-226
    • /
    • 2010
  • In this paper, the static overmodulation is proposed for the 2-phase full bridge inverter. The overmodulation strategy increases a fundamental output voltage and improves a voltage utilization up to the maximum in the overmodulation range. The linear modulation range and static overmodulation range are defined in the 2-phase full bridge inverter. The overmodulation strategies which increase a voltage utilization until the 4-step mode by linearization of the output voltage in overmodulation range are proposed. To maintain a linearity of the relation between a reference voltage and a fundamental output voltage, this paper suggests a compensation voltage, whose magnitude or phase is modified to the proposed control scheme. Simulation and experimentation results demonstrate the effectiveness of the proposed algorithms.

  • PDF

FPGA Design and SoC Implementation of Constant-Amplitude Multicode Bi-Orthogonal Modulation (정진폭 다중 부호 이진 직교 변복조기의 FPGA 설계 및 SoC 구현)

  • Hong, Dae-Ki;Kim, Yong-Seong;Kim, Sun-Hee;Cho, Jin-Woong;Kang, Sung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.11C
    • /
    • pp.1102-1110
    • /
    • 2007
  • In this paper, we design the FPGA (Field-Programmable Gate Array) of the CAMB (Constant-Amplitude Multi-code Biorthogonal) modulation, and implement the SoC (System on Chip). The ASIC (Application Specific Integrated Circuit) chip is be implemented through targeting and board test. This 12Mbps modem SoC includes the ARM (Advanced RISC Machine)7TDMI, 64Kbyte SRAM(Static Random Access Memory) and ADC (Analog to Digital Converter)/DAC (Digital to Analog Converter) for flexible applications. Additionally, the modem SoC can support the variable communication interfaces such as the 16-bits PCMCIA (Personal Computer Memory Card International Association), USB (Universal Serial Bus) 1.1, and 16C550 Compatible UART (Universal Asynchronous Receiver/Transmitter).