• Title/Summary/Keyword: Static insulation

Search Result 42, Processing Time 0.023 seconds

Design for Strengthening Structural Integrity of the Reflective Metal Insulation in the Nuclear Power Plant (원전 금속단열재의 구조 건전성 강화를 위한 설계 방안)

  • Lee, Sung Myung;Eo, Min Hun;Kim, Seung Hyun;Jang, Kye Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.107-113
    • /
    • 2015
  • The goal of this paper is to investigate structural integrity factors of RMI(reflective metal insulation) to confirm the design requirements in nuclear power plant. Currently, a glass wool insulation is using now, but it will gradually be replaced with the reflective metal insulation maded by stainless steel plates. The main function of an insulation is to minimize a heat loss of vessel and pipes in RCS(reactor coolant system). It has to maintain structural a integrity in nuclear power plant life duration. In this study, the structural integrity analysis was carried out both multi-plate and outer shell plate by using a static analysis and experimental test. First, inner multi-plate has a self support structure for being air space. Because the effect of total static weight in multi-layer plate is low, a plate collapse possibility is not high. Considering optimum thin plate pressing process, it has to pre-check the basic physical properties. Second, the outer segment thickness and stiffener shape are verified by the numerical static analysis, and sample test for both type of panel and cylindrical pipe model.

Heating Power Consumption Comparison Study Between Static Insulation and Dynamic Insulation at KIER Twin Test Cell (동적 단열재를 적용한 건물에서의 에너지소비량 비교 분석)

  • Kang, Eun-Chul;Park, Yong-Dai;Lee, Euy-Joon;Yun, Tae-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.919-924
    • /
    • 2008
  • Power consumption in the building thermal load could be the sum of the building fabric conduction load, building ventilation convection load and other such as radiation loss load. Dynamic Breathing Building (DBB) is the state-of-the-art to improve the wall insulation and indoor air quality(IAQ) performance as making air flow through the wall. This heat recovery type DBB contributes the power consumption saving due to the improved dynamic U-value. KIER twin test cell with static insulation(SI) and dynamic insulation(DI) at KIER was developed to test building power consumption at the real outside conditions. Then, the actual results were compared with the theory to predict the power consumption at the KIER twin test cell and introduced the building new radiation loss factor $\alpha$ to explain the difference between the both the theory and the actual case. As the results, the power consumption at the breathing DI wall building could saved 10.8% at the 2ACH(Air change per hour) compared with conventional insulation. The building radiation loss factor $\alpha$ for this test condition to calibrate the actual test was 0.55 in the test condition.

  • PDF

Simple predictive heat leakage estimation of static non-vacuum insulated cryogenic vessel

  • Mzad, Hocine
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.3
    • /
    • pp.25-30
    • /
    • 2020
  • The diminishing of heat leak into cryogenic vessels can prolong the storage time of cryogenic liquid. With the storage of cryogenic liquid reducing, the heat leak decreases, while the actual storage time increases. Regarding to the theoretical analysis, the obtained results seems to be constructive for the cryogenic insulation system applications. This study presents a predictive assessment of heat leak occurring in non-vacuum tanks with a single layer of insulation. A Radial steady-state heat transfer, based on heat conduction equation, is taken into consideration. Graphical results show the thermal performance of the insulation used, they also allow us to choose the appropriate insulation thickness according to the shape and diameter of the storage tank.

A Measurement Study of a Dynamic Insulator Thermal Performance (동적 단열재의 열성능 측정에 관한 연구)

  • Ko, Seon-Mi;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.6
    • /
    • pp.361-368
    • /
    • 2010
  • Due to the insulation and the air-tightness requirement in modern buildings have resulted NBS(New Building Syndrome) and SBS(Sick Building Syndrome) of IAQ problems. Therefore, energy efficient way of solving such IAQ issues are of major concern in these days and building industries. This paper introduces a method to improve thermal performance with a DI(Dynamic Insulation) concept. The characteristic of the dynamic insulation is that the lower U-value as the higher air velocity through the DI in a micro level. A thermal performance monitoring study has been conducted to show the energy impact of porous DI over the static insulation material. The results show that up to 45% could be improved in the case with DI compared to the conventional insulation.

A Study on Impact Sound Insulation Properties of EPDM Micro Cellular Pad (에틸렌-프로필렌-디엔 삼원 공중합 (EPDM) 발포체의 충격음 저감 특성에 관한 연구)

  • Lee, Kyung-Won;Lee, Jung-Hee;Sohn, Ho-Soung
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.138-148
    • /
    • 2000
  • In order to investigate the possibility of EPDM micro cellular pad (MCP) as an impact sound insulation product, we studied static/dynamic properties and vibration transfer characteristics of EPDM MCP depending on shape, thickness, degrees of foaming by using material test system (MTS) and lab scale mock-up test apparatus. Static/dynamic rigidity is increased when shape is simple. thickness and degrees of foaming low. We could see that dynamic stiffness is proportional to the transmissibility of EPDM MCP. When dynamic stiffness is increased, characteristic peak at transmissibility curve moves high frequency range or snows increase of maximum value of transmissibility. For lab scale mock-up test and finite element method, EPDM MCP shows low vibration velocity and superior mode shape to just concrete plus slab structure. We could confirm that possibility of EPDM MCP as a impact sound insulation product is high.

  • PDF

Investigation of the Cryogenic Performance of the High Density Polyurethane Foam (고밀도 폴리우레탄 폼의 극저온 성능 분석)

  • Jeong-Hyeon Kim;Jeong-Dae Kim;Tae-Wook Kim;Seul-Kee Kim;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1289-1295
    • /
    • 2023
  • Polyurethane foam insulation required for storing and transporting cryogenic liquefied gas is already widely used as a thermal insulation material for commercial LNG carriers and onshore due to its stable price and high insulation performance. These polyurethane foams are reported to have different mechanical performance depending on the density, and the density parameter is determined depending on the amount of the blowing agent. In this study, density-dependent polyurethane foam was fabricated by adjusting the amount of blowing agent. The mechanical properties of polyurethane foam were analyzed in the room temperature and cryogenic temperature range of -163℃ at 1.5 mm/min, which is a quasi-static load range, and the cells were observed through microstructure analysis. The characteristics of linear elasticity, plateau, and densification, which are quasi-static mechanical behaviors of polyurethane foam, were shown, and the correlation between density and mechanical properties in a cryogenic environment was confirmed. The correlation between mechanical behavior and cell size was also analyzed through SEM morphology analysis. Polyurethane foam with a density of 180 kg/m3 had a density about twice as high as that of a polyurethane foam with a density of 96 kg/m3, but yield strength was about 51% higher and cell size was about 9.5% smaller.

Characteristics of Static Electrification on Insulation Oil Aging (변압기 절연유의 열화에 따른 대전특성)

  • Kweon, Dong-Jin;Kim, Han-Sang;Chong, Yong-Ki;Kim, Kyoung-Wha;Kim, Du-Seok;Kwak, Hee-Ro;Park, Tong-Wha
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1615-1618
    • /
    • 1994
  • This paper studied the streaming electrification of the U.H.V. transformer with the spinning cylinder system, and compared and analyzed it with the conventional forced flowing system which uses a pump or gas for oil flowing. Also, accumulated surface voltage in its electrified material was measured with the electrostatic voltmeter, and the effect of insulation oil aging was measured. As results, in spinning cylinder system, characteristics of the streaming electrification to its rotational speed and oil temperature are same tendency as those of tile forced flowing system and it showed the spinning cylinder system is useful to study the streaming electrification. And, aging of insulation oil increases the electricity of streaming electrification at initial stage of aging.

  • PDF

ELECTRICAL FIRE (전기화재)

  • Park, Heon-Sik
    • Fire Protection Technology
    • /
    • s.11
    • /
    • pp.13-22
    • /
    • 1991
  • To understand electrical fire, the cause of it is classified into overcurrent, short circuit, leak, joint, overheat, accumulation of heat, spark, deterioration of insulation, static electricity, and lightning etc. and explained. And then by the precautions to it, proposed to the improvement of electric products, the completeness of safecty management and the use of alarm systems.

  • PDF

Ablation Characteristic Study for Carbon Fabric/EPDM Chamber Insulation (Carbon Fabric을 삽입한 EPDM계 연소관 내열재 삭마 특성 연구)

  • Kim, Jin-Yong;Choi, Ji-Yong;Rho, Tae-Ho;Lee, Won-Bok;Cho, Won-Man;Hahm, Hee-Cheol;Yun, Nam-Gyun;Rhee, Young-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • We developed the carbon fabric/EPDM chamber insulation in order to protect motor case with high intensity gas flow. A six-inch simulation motor connected with extension tube was designed to test ablation characteristic of insulation. High intensity gas flow was induced by a FRP disc with hole between motor and extension tube. After ground test, ablation depth of the carbon fabric/EPDM insulation was decreased compared to another insulations after ground static test.

Ablation Characteristic Study for Carbon Fabric/EPDM Chamber Insulation (Carbon Fabric을 삽입한 EPDM계 연소관 내열재 삭마 특성 연구)

  • Kim, Jin-Yong;Choi, Ji-Yong;Rho, Tae-Ho;Lee, Won-Bok;Cho, Won-Man;Ham, Hee-Cheol;Yun, Nam-Gyun;Rhee, Young-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.85-91
    • /
    • 2011
  • We developed carbon fabric/EPDM chamber insulation in order to protect motor case with high intensity gas flow. Six-inch simulation motor connected with extension tube was designed to test ablation characteristic of insulation. High intensity gas flow was induced by FRP disc with hole between motor and extension tube. After ground test, ablation depth of carbon fabric/EPDM insulation was decreased compared to another insulations after ground static test.

  • PDF