• Title/Summary/Keyword: Static deflection method

Search Result 193, Processing Time 0.031 seconds

A Study on the Comparison of Performance of PC-Slab Composite Plate Girder from the Actual Sized Experiment (실물실험을 통한 PC-Slab합성 판형교의 성능비교연구)

  • Min, Kyung-Ju;Lee, Sung-Uk;Kim, Yung-Guk;Woo, Yong-Keun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1300-1309
    • /
    • 2010
  • In the railway bridges, steel plate girder types are preferred due the high stability. Nevertheless, it has been pointed out that this type of bridge has problems such as, structural damages in the rail and girder seat, noise problem due to impact at the rail joint and excessive vibration. This vibration and/or deflection are mainly because insufficient stiffness of steel plate type of bridge. To resolve these problems, PC-Slab composite plate girder type which has simple process and economic cost, is proposed in this study. The static and dynamic experiment is performed by using the production of actual sized PC-Slab and abandoned steel plate girder. The object of this experiment is to verify the fact that girder stiffness increase and structural safety. The result of the experiment is used to analyze the effect of performance improvement of PC composite plate girder type. Using this method, economic rail maintainers, girder stiffness increase, and also speed/ride improvement even for existing rail could be expected by dynamic performance improvement. Additionally noise due to impact, deflection and vibration caused from long rails can be reduced.

  • PDF

An analytical solution for static analysis of a simply supported moderately thick sandwich piezoelectric plate

  • Wu, Lanhe;Jiang, Zhiqing;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.641-654
    • /
    • 2004
  • This paper presents a theoretic model of a smart structure, a transversely isotropic piezoelectric thick square plate constructed with three laminas, piezoelectric-elastic-piezoelectric layer, by adopting the first order shear deformation plate theory and piezoelectric theory. This model assumes that the transverse displacements through thickness are linear, and the in-plane displacements in the mid-plane of the plate are not taken to be account. By using Fourier's series expansion, an exact Navier typed analytical solution for deflection and electric potential of the simply supported smart plate is obtained. The electric boundary conditions are being grounded along four vertical edges. The external voltage and non-external voltage applied on the surfaces of piezoelectric layers are all considered. The convergence of the present approach is carefully studied. Comparison studies are also made for verifying the accuracy and the applicability of the present method. Then some new results of the electric potentials and displacements are provided. Numerical results show that the electrostatic voltage is approximately linear in the thickness direction, while parabolic in the plate in-plane directions, for both the deflection and the electric voltage. These results are very useful for distributed sensing and finite element verification.

Experimental study on long-term behaviour of CFRP strengthened RC beams under sustained load

  • Ahmed, Ehsan;Sobuz, Habibur Rahman
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.105-120
    • /
    • 2011
  • The strengthening and rehabilitation of reinforced concrete structures with externally bonded carbon fibre reinforced polymer (FRP) laminates has shown excellent performance and, as a result, this technology is rapidly replacing steel plate bonding techniques. This paper addresses this issue, and presents results deals with the influence of external bonded CFRP-reinforcement on the time-dependent behavior of reinforced concrete beams. A total of eight reinforced concrete beams with cracked and un-cracked section, with and without externally bonded CFRP laminates, were investigated for their creep and shrinkage behavior. All the beams considered in this paper were simply supported and subjected to a uniform sustained loading for the period of six months. The main parameters of this study are two types of sustained load and different degrees of strengthening scheme for both cracked and un-cracked sections of beams. Both analytical and experimental work has been carried out on strengthened beams to investigate the cracking and deflection performance. The applied sustained load was 56% and 38% of the ultimate static capacities of the un-strengthened beams for cracked and un-cracked section respectively. The analytical values based on effective modulus method (EMM) are compared to the experimental results and it is found that the analytical values are in general give conservative estimates of the experimental results. It was concluded that the attachment of CFRP composite laminates has a positive influence on the long term performance of strengthened beams.

Active shape control of a cantilever by resistively interconnected piezoelectric patches

  • Schoeftner, J.;Buchberger, G.
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.501-521
    • /
    • 2013
  • This paper is concerned with static and dynamic shape control of a laminated Bernoulli-Euler beam hosting a uniformly distributed array of resistively interconnected piezoelectric patches. We present an analytical one-dimensional model for a laminated piezoelectric beam with material discontinuities within the framework of Bernoulli-Euler and extent the model by a network of resistors which are connected to several piezoelectric patch actuators. The voltage of only one piezoelectric patch is prescribed: we answer the question how to design the interconnected resistive electric network in order to annihilate lateral vibrations of a cantilever. As a practical example, a cantilever with eight patch actuators under the influence of a tip-force is studied. It is found that the deflection at eight arbitrary points along the beam axis may be controlled independently, if the local action of the piezoelectric patches is equal in magnitude, but opposite in sign, to the external load. This is achieved by the proper design of the resistive network and a suitable choice of the input voltage signal. The validity of our method is exact in the static case for a Bernoulli-Euler beam, but it also gives satisfactory results at higher frequencies and for transient excitations. As long as a certain non-dimensional parameter, involving the number of the piezoelectric patches, the sum of the resistances in the electric network and the excitation frequency, is small, the proposed shape control method is approximately fulfilled for dynamic load excitations. We evaluate the feasibility of the proposed shape control method with a more refined model, by comparing the results of our one-dimensional calculations based on the extended Bernoulli-Euler equations to three-dimensional electromechanically coupled finite element results in ANSYS 12.0. The results with the simple Bernoulli-Euler model agree well with the three-dimensional finite element results.

Analysis of Flexible Media by Dynamic Elastica Theory with Aerodynamic Force (공기저항이 고려된 Dynamic Elastica 이론을 통한 유연매체의 거동해석)

  • Hong, Sung-Kwon;Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.547-550
    • /
    • 2005
  • In many machines handling lightweight and flexible media, such as automated teller machines and printers, the media must transit an open space. It is important to predict the static and dynamic behavior of the sheets with a high degree of reliability The nonlinear theory of the dynamic elastica has often been used to a nonlinear dynamic deflection model. In this paper, the governing equation is derived and simulated by the finite difference method. The analysis has to include aerodynamic effect for more exact behavior analysis, because the flexible media can be deformed drastically by a little force. Therefore aerodynamic force must be applied to the governing equation. Different results were obtained with and without aerodynamic effect and the resulted show that after contacting circular guide, the directions of flexible media of two cases are different.

  • PDF

A STUDY OF AERODYNAMIC MODELING FOR UNFOLDING WING MOTION ANALYSIS (전개하는 날개의 공력 모델링 연구)

  • Jung, S.Y.;Yoon, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.245-250
    • /
    • 2008
  • For simulation of a wing unfolding motion for the various aerodynamic conditions, equation governing unfolding motion and moments applying to the unfolding wing were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with twisted wing, whose deflection angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to wing deployment test results.

  • PDF

A STUDY OF AERODYNAMIC MODELING FOR UNFOLDING WING MOTION ANALYSIS (전개하는 날개의 공력 모델링 연구)

  • Jung, S.Y.;Yoon, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.245-250
    • /
    • 2008
  • For simulation of a wing unfolding motion for the various aerodynamic conditions, equation governing unfolding motion and moments applying to the unfolding wing were modelled. Aerodynamic roll moment consists of the static roll moment and the damping moment, which were obtained through wind tunnel tests and numerical analyses respectively. Panel method was used to compute the roll damping coefficient with twisted wing, whose deflection angle was equivalent to angle of attack due to the deployment motion. Roll damping coefficient is a function of angle of attack, sideslip angle, and deployment angle but not of angular velocity of deployment. Simulation with aerodynamic damping model gave more similar deployment time compared to wing deployment test results.

  • PDF

Vibration, buckling and dynamic stability of a cantilever rectangular plate subjected to in-plane force

  • Takahashi, Kazuo;Wu, Mincharn;Nakazawa, Satoshi
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.939-953
    • /
    • 1998
  • Vibration, buckling and dynamic stability of a cantilever rectangular plate subjected to an in-plane sinusoidally varying load applied along the free end are analyzed. The thin plate small deflection theory is used. The Rayleigh-Ritz method is employed to solve vibration and buckling of the plate. The dynamic stability problem is solved by using the Hamilton principle to drive time variables. The resulting time variables are solved by the harmonic balance method. Buckling properties and natural frequencies of the plate are shown at first. Unstable regions are presented for various loading conditions. Simple parametric resonances and combination resonances with sum type are obtained for various loading conditions, static load and damping.

A Catenary System Analysis for Studying the Dynamic Characteristics of a High Speed Rail Pantograph

  • Han, Chang-Soo;Park, Tong-Jin;Kim, Byung-Jin;Wang, Young-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.436-447
    • /
    • 2002
  • In this study, the dynamic response of a catenary system that supplies electrical power to high-speed trains is investigated. One of the important problems which is accompanied by increasing the speed of a high-speed rail, is the performance of stable current collection. Another problem which has been encountered, is maintaining continuous contact force between the catenary and the pantograph without loss of panhead. The dynamic analyses of the catenary based on the Finite Element Method (FEM) are performed to develop a pantograph suitable for high speed operation. The static deflection of the catenary, the stiffness variation in contact lines, the dynamic response of the catenary undergoing the force of a constantly moving load and the contact force were calculated. It was confirmed that a catenary model is necessary to study the dynamic characteristics of the pantograph system.

Performance Analysis of Gas Foil Journal & Thrust Bearings (가스포일 저널베어링 및 스러스트베어링의 성능해석)

  • Kim Young-Cheol;Han Jeong-Wan;Kim Kyung-Woong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.267-272
    • /
    • 2003
  • This paper presents a performance analysis model of corrugated bump foil bearings. The analyses for not only 1st generation bump foil journal bearings but also bump foil thrust bearings are performed. Static performances such as load capacity, attitude angle, pressure distribution, foil deflection, and film thickness are accurately estimated by using soft elasto-hydrodynamic analysis technique and finite difference numerical method. Also dynamic performances such as stiffness coefficients and damping coefficients are estimated by perturbation method. The analysis technique may be appliable to rotordynamic analysis, stability analysis, and optimized bearing design.

  • PDF