• Title/Summary/Keyword: Static collapse

Search Result 225, Processing Time 0.021 seconds

Cavitation Characteristics on Impeller Materials of Centrifugal Pump for Ship in Sea Water and Fresh Water (해수와 청수환경에서 선박용 원심펌프 임펠러 재료의 캐비테이션 특성)

  • Im, Myeong-Hwan
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.218-224
    • /
    • 2011
  • The fresh water and sea water in present ships is used as cooling water for marine engine. Therefore, corrosion damage in seawater system is frequently occurred. In particular, in the impeller of pump, the performance and material span due to the corrosion and cavitation erosion has adverse effects. Most of the pump impellers in vessels are used Cu-Al alloy. Cu-Al alloy which having the excellent mechanical properties and corrosion resistance is widely used in marine environments. However, despite the excellent characteristics, the periodic replacement parts due to the cavitation damage in seawater is vulnerable to economic viewpoint. In this study, Cu-Al alloy used with impeller for centrifugal pump were conducted various experiments to evaluate its characteristics in seawater and fresh water solutions. As an electrochemical result, the dynamic conditions that exposed to the cavitation environment presented high corrosion current density with collapse of the cavity compared with the static conditions. Cavitation test results, the weightloss and weightloss rate in fresh water are observed more than those of seawater.

Optimize Design for 5MW Offshore Wind Turbine Sub-structure Jack-up Platform (5MW급 해상풍력 Sub-structure Jack-up Platform 최적화 설계)

  • Jeon, Jung-Do;Jeon, Eon-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.115-122
    • /
    • 2012
  • The purpose of this study is to optimize the design of the jack-up platform for 5MW offshore wind turbine system. Considering all the environmental loads such as currents, waves, winds and so on, the members of structures have been designed and optimized based on the AISC and API-RP-2A to be within the allowable stress even in the most critical and severe condition. In addition to the above strength check of structural members, the joint punching shear check and the hydrostatic collapse check are also performed where they are required for the design. The design life of the jack-up platform is 50 years for the static strength check and the fatigue design life is 100 years including to the DFF(Design Fatigue Factor) of 2.0 to have enough stability and workability for the design optimization.

Seismic Capacity of a Reinforced Concrete Structure without Seismic Detailing and Implication to the Seismic Design in the Region of Moderate Seismicity (비내진상세 철근콘크리트 구조물의 내진성능 및 중약진지역 내진설계에의 적용)

  • 김익현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.305-312
    • /
    • 1999
  • A four-story reinforced concrete frame building model is designed for the gravity loads. only Static nonlinear pushover analyses are performed in two orthogonal horizontal directions. The overall capacity curves are converted into ADRS spectra and compared with demand spectra. At several points the deformed shape moment and shear distribution are calculated. It is observed that the seismic capacity may not meet the design requirements in soft soil condition and may collapse in MCE. It is concluded that limited but adequate amount of ductility need be provided in the seismic design in low to moderate seismicity regions.

  • PDF

Effect of column loss location on structural response of a generic steel moment resisting frame

  • Rezvani, Farshad Hashemi;Jeffers, Ann E.;Asgarian, Behrouz;Ronagh, Hamid Reza
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.217-229
    • /
    • 2017
  • The effect of column loss location on the structural response of steel moment resisting frames (MRF) is investigated in this study. A series of nonlinear static and dynamic analyses were performed to determine the resistance of a generic frame to an arbitrary column loss and detect the structural members that are susceptible to failure progression beyond that point. Both force-controlled and deformation-controlled actions based on UFC 4-023-03 and ASCE/SEI 41-06 were implemented to define the acceptance criteria for nine APM cases defined in this study. Results revealed that the structural resistance against an arbitrary column loss in the top story is at least 80% smaller than that of the bottom story. In addition, it was found that the dynamic increase factor (DIF) at the failure point is at most 1.13.

A new design method for site-joints of the tower crane mast by non-linear FEM analysis

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.343-365
    • /
    • 2019
  • Among the themes related to earthquake countermeasures at construction sites, those for tower cranes are particularly important. An accident involving the collapse of a crane during the construction of a skyscraper has serious consequences, such as human injury or death, enormous repair costs, and significant delays in construction. One of the causes of deadly tower crane collapses is the destruction of the site joints of the tower crane mast. This paper proposes a new design method by static elastoplastic finite element analysis using a supercomputer for the design of the end plate-type tensile bolted joints, which are generally applied to the site joints of a tower crane mast. This new design method not only enables highly accurate and reliable joint design but also allows for a design that considers construction conditions, such as the introduction of a pre-tension axial force on the bolts. By applying this new design method, the earthquake resistance of tower cranes will undoubtedly be improved.

Effects of face-sheet materials on the flexural behavior of aluminum foam sandwich

  • Xiao, Wei;Yan, Chang;Tian, Weibo;Tian, Weiping;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.301-308
    • /
    • 2018
  • Properties of AFS vary with the changes in the face-sheet materials. Hence, the performance of AFS can be optimized by selecting face-sheet materials. In this work, three types of face-sheet materials representing elastic-perfectly plastic, elastic-plastic strain hardening and purely elastic materials were employed to study their effects on the flexural behavior and failure mechanism of AFS systematically. Result showed face-sheet materials affected the failure mechanism and energy absorption ability of AFS significantly. When the foam cores were sandwiched by aluminum alloy 6061, the AFS failed by face-sheet yielding and crack without collapse of the foam core, there was no clear plastic platform in the Load-Displacement curve. When the foam cores were sandwiched by stainless steel 304 and carbon fiber fabric, there were no face-sheet crack and the sandwich structure failed by core shear and collapse, plastic platform appeared. Energy absorption abilities of steel and carbon fiber reinforced AFS were much higher than aluminum alloy reinforced one. Carbon fiber was suggested as the best choice for AFS for its light weight and high performance. The versus strength ratio of face sheet to core was suggested to be a significant value for AFS structure design which may determine the failure mechanism of a certain AFS structure.

Behavior of Shear Yielding Thin Steel Plate Wall with Tib (리브로 보강한 전단 항복형 강판벽의 거동)

  • Yun, Myung Ho;Wi, Ji Eun;Lee, Myung Ho;Oh, Sang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.503-511
    • /
    • 2001
  • Structures are designed against earthquakes and reinforced concrete shear walls or steel bracings are usually used as aseismic resistant element. However their hysteretic characteristics in plastic region ductility and capacity of energy absorption are not always good. Besides their stiffness is so rigid that structure designed by static analysis is occasionally disadvantageous. when dynamically analized. Generally a steel plate subjected to shear force has a good deformation capacity Also it has been considered to retain comparative shear strength and stiffness Steel shear wall can be used as lateral load resistant element for seismic design. However there was little knowledge concerning shear force-deformation characteristics of steel plates up to their collapse state In this study a series of shear loading tests of steel plate collapse state. In this study a series of shear loading tests of steel plate surrounded by vertical and horizontal ribs were conducted with the parameters of D/H ratios rib type and the loading patterns. The test result is discussed and analyzed to obtain several restoring characteristics. that is shear force-deformation stiffness and yield strength etc.

  • PDF

Evaluation of seismic performance factors for tension-only braced frames

  • Shariati, Mahdi;Lagzian, Majid;Maleki, Shervin;Shariati, Ali;Trung, Nguyen Thoi
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.599-609
    • /
    • 2020
  • The tension-only braced frames (TOBFs) are widely used as a lateral force resisting system (LFRS) in low-rise steel buildings due to their simplicity and economic advantage. However, the system has poor seismic energy dissipation capacity and pinched hysteresis behavior caused by early buckling of slender bracing members. The main concern in utilizing the TOBF system is the determination of appropriate performance factors for seismic design. A formalized approach to quantify the seismic performance factor (SPF) based on determining an acceptable margin of safety against collapse is introduced by FEMA P695. The methodology is applied in this paper to assess the SPFs of the TOBF systems. For this purpose, a trial value of the R factor was first employed to design and model a set of TOBF archetype structures. Afterwards, the level of safety against collapse provided by the assumed R factor was investigated by using the non-linear analysis procedure of FEMA P695 comprising incremental dynamic analysis (IDA) under a set of prescribed ground motions. It was found that the R factor of 3.0 is appropriate for safe design of TOBFs. Also, the system overstrength factor (Ω0) was estimated as 2.0 by performing non-linear static analyses.

Seismic Performance Evaluation of Flat Column Dry Wall System and Wall Slab System Structures (무량복합 및 벽식 구조시스템의 내진성능평가)

  • Kang, Hyungoo;Lee, Minhee;Kim, Jinkoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • In this paper the seismic performance of a flat plate wall system structure was evaluated based on the ATC-63 approach, and the results were compared with those of a wall slab structure having the same size. As analysis model structures, a twelve story flat plate wall structure and a wall slab structure were designed based on the KBC-2009, and their seismic performances and collapse behaviors were evaluated by nonlinear static and incremental dynamic analyses(IDA). It was observed that the flat plate wall structure was designed with smaller amount of reinforced concrete, and showed slightly larger displacement response compared with those of the wall slab structure. The collapse margin ratios of the two structures obtained from the incremental dynamic analyses satisfied the limit states specified in the ATC-63, and the structures turned out to have enough capacity to resist the design level seismic load.

Seismic Fragility Analysis of Concrete Bridges Considering the Lap Splices of T-type Column (T형 교각의 겹침이음을 고려한 콘크리트 교량의 지진취약도 분석)

  • An, Hyojoon;Cho, Baiksoon;Park, Ju-Hyun;Lee, Jong-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.287-295
    • /
    • 2023
  • The collapse of bridges due to earthquakes results in many casualties and property damages. Thus, accurate prediction and preparation are required for the behavior of bridges during earthquakes. In particular, columns play an important role in the seismic behavior of bridges. The risk of collapse due to an earthquake increases when there is a problem of the insufficient lap splice in the column. In this study, to analyze the characteristics of the lap splice in the column, a numerical model was defined for the insufficient lap-spliced columns and verified using experimental data. The developed column model was applied to a commonly used RC slab bridge. Nonlinear static analysis for the column was performed to evaluate the change in the performance of the column according to the lap-spliced length. In addition, this study assessed the effect of the lap-spliced length on the seismic fragility analysis.