• 제목/요약/키워드: Static and free vibration analyses

검색결과 34건 처리시간 0.026초

New insights in piezoelectric free-vibrations using simplified modeling and analyses

  • Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • 제5권6호
    • /
    • pp.591-612
    • /
    • 2009
  • New insights are presented in simplified modeling and analysis of free vibrations of piezoelectric - based smart structures and systems. These consist, first, in extending the wide used piezoelectric-thermal analogy (TA) simplified modeling approach in currently static actuation to piezoelectric free-vibrations under short-circuit (SC) and approximate open-circuit (OC) electric conditions; second, the popular piezoelectric strain induced - potential (IP) simplified modeling concept is revisited. It is shown that the IP resulting frequencies are insensitive to the electric SC/OC conditions; in particular, SC frequencies are found to be the same as those resulting from the newly proposed OC TA. Two-dimensional plane strain (PStrain) and plane stress (PStress) free-vibrations problems are then analyzed for above used SC and approximate OC electric conditions. It is shown theoretically and validated numerically that, for both SC and OC electric conditions, PStress frequencies are lower than PStrain ones, and that 3D frequencies are bounded from below by the former and from above by the latter. The same holds for the modal electro-mechanical coupling coefficient that is retained as a comparator of presented models and analyses.

Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model

  • Dihaj, Ahmed;Zidour, Mohamed;Meradjah, Mustapha;Rakrak, Kaddour;Heireche, Houari;Chemi, Awda
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.335-342
    • /
    • 2018
  • The transverse free vibration of chiral double-walled carbon nanotube (DWCNTs) embedded in elastic medium is modeled by the non-local elasticity theory and Euler Bernoulli beam model. The governing equations are derived and the solutions of frequency are obtained. According to this study, the vibrational mode number, the small-scale coefficient, the Winkler parameter and chirality of double-walled carbon nanotube on the frequency ratio (xN) of the (DWCNTs) are studied and discussed. The new features of the vibration behavior of (DWCNTs) embedded in an elastic medium and the present solutions can be used for the static and dynamic analyses of double-walled carbon nanotubes.

예인되는 케이블의 고유치 해석에 관한 연구 - 하부 끝단 자유 경계조건 (Study on Eigenvalue Analysis for a Towed Cable - Free Boundary at the Bottom End)

  • 정동호;김현주;문덕수;이승원
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.74-80
    • /
    • 2009
  • In this study, the static and modal analyses to find the characteristic of eigenvalues for a towed cable were with a free boundary condition at the bottom end carried out with numerical study. The resulting numerical code with finite element method was used to study sample problems for a cable with towing speeds. After tracing the equilibrium state with a towing speed through the static analysis, modal analysis on the basis of static results was performed. The static top tension for a critical towing speed is nearly 50 percent of what it was for a free hanging pipe. From static analyses, it is found that towing speed has a noticeable effect on top tension of a towed pipe. At a high towing speed, differences between the first and second periods become larger. Compared to the fundamental period for a free hanging pipe, that for a towed pipe with a critical towing speed is approximately 1.4 times larger. This result is very important point in that the lock in condition and tension of the towed cable system with top excitation can be predicted. The corrected close form solution to solve natural periods for a towed cable was presented in this study. The code is validated by comparison of the results of theoretical and numerical studies. Two results were in very good agreement. This study can contribute to predicting the lock-in condition and tension for a towed cable or pipe with top excitation.

등가보 이론을 이용한 복합 거더의 정적 및 자유진동 해석 (Static and Free Vibration Analyses of Hybrid Girders by the Equivalent Beam Theory)

  • 최인식;여인호
    • 한국철도학회논문집
    • /
    • 제10권5호
    • /
    • pp.600-606
    • /
    • 2007
  • 복부 파형강판 거더와 복합 트러스 거더의 정적 및 동적거동 특성을 분석하기 위해 3차원 유한요소해석을 수행하였고, 이 결과를 등가보 이론에 의한 해석결과와 비교하였다. 등가보 이론은 트러스 구조의 모든 단면제원을 등가의 보로 치환함과 동시에 전단계수 등의 단면특성을 고려한 이론이다. 등가보 이론 적용 시 복부 파형강판 거더의 전단계수는 복부 단면적에 대한 전체 단면적의 비로 산정하였고, 복합 트러스 거더의 전단계수는 Abdel의 계산식을 사용하여 산정하였다. 정적해석 및 자유진동해석 결과 3차원 유한요소모델을 이용한 해석결과가 전단변형을 고려한 등가보 이론에 의한 해석결과와 잘 일치하였다.

Static and dynamic analysis of guyed steel lattice towers

  • Meshmesha, Hussam M.;Kennedy, John B.;Sennah, Khaled;Moradi, Saber
    • Structural Engineering and Mechanics
    • /
    • 제69권5호
    • /
    • pp.567-577
    • /
    • 2019
  • Guyed steel lattice towers (or guyed masts) are widely used for supporting antennas for telecommunications and broadcasting. This paper presents a numerical study on the static and dynamic response of guyed towers. Three-dimensional nonlinear finite-element models are used to simulate the response. Through performing static pushover analyses and free-vibration (modal) analyses, the effect of different bracing configurations is investigated. In addition, seismic analyses are performed on towers of different heights to study the influence of earthquake excitation time-lag (or the earthquake travel distance between tower anchors) and antenna weight on the seismic response of guyed towers. The results show that the inclusion of time lag in the seismic analysis of guyed towers can influence shear and moment distribution along the height of the mast. Moreover, it is found that the lateral response is insensitive to bracing configurations. The results also show that, depending on the mast height, an increased antenna weight can reduce the tower maximum base shear while other response quantities, such as cables tension force are found to be insensitive to variation in the antenna weight.

Static stability and vibration response of rotating carbon-nanotube-reinforced composite beams in thermal environment

  • Ozge Ozdemir;Huseyin Ural;Alexandre de Macedo Wahrhaftig
    • Advances in nano research
    • /
    • 제16권5호
    • /
    • pp.445-458
    • /
    • 2024
  • The objective of this paper is to present free vibration and static stability analyses of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. Beam structural equations and CNT-reinforced composite (CNTRC) beam formulations are derived based on Timoshenko beam theory (TBT). The temperature-dependent properties of the beam material, such as the elastic modulus, shear modulus, and material density, are assumed to vary over the thickness according to the rule of mixture. The beam material is modeled as a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix. The SWCNTs are aligned and distributed in the isotropic matrix with different patterns of reinforcement, namely the UD (uniform), FG-O, FG-V, FG- Λ and FG-X distributions, where FG-V and FG- Λ are asymmetric patterns. Numerical examples are presented to illustrate the effects of several essential parameters, including the rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force, and moments due to temperature variation. To the best of the authors' knowledge, this study represents the first attempt at the finite element modeling of rotating CNTRC Timoshenko beams under a thermal environment. The results are presented in tables and figures for both symmetric and asymmetric distribution patterns, and can be used as benchmarks for further validation.

Optical Design for UVOMPIS and Design Concept of the Mirror Holder

  • Park, Woojin;Chang, Seunghyuk;Pak, Soojong;Han, Jimin;Ahn, Hojae;Lee, Sunwoo;Kim, Geon Hee;Lee, Dae-Hee
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.66.3-66.3
    • /
    • 2020
  • We present the optical design of Linear Astigmatism Free - Three Mirror System (LAF-TMS) D200 for UVO-Multiband Polarizing Imager System (UVOMPIS). LAF-TMS D200 is the off-axis wide-field telescope with EPD = 200 mm, F/2, and Field of View (FoV) = 2° × 4°. Its optical mirrors are optimized to freeform surfaces for high-quality optical performance over a wide FoV. The proposed mirror holder consists of four aluminum optomechanical modules that have applied for LAF-TMS D150 which is a prototype of the LAF-TMS system. It can accurately mount mirrors and also can sustain from vibration environments. As a feasibility study, quasi-static, modal, harmonic, and random vibration analyses have been performed to LAF-TMS D150 optomechanical structure under the qualification level of the Soyuz-2/Fregat launch system. We evaluate the vibration analysis results in terms of von Mises stress and Margin of Safety.

  • PDF

가우스 적분점을 수정한 2차원 6-절점 요소 및 3차원 16-절점 요소에 의한 자유진동해석 (The Free Vibration Analyses by Using Two Dimensional 6-Node Element and Three Dimensional 16-Node element with Modification of Gauss Sampling Point)

  • 김정운;경진호;권영두
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2922-2931
    • /
    • 1994
  • We propose a modified 6-node element, where the sampling point of Gauss quadrature moved in the thickness direction. The modified 6-node element has been applied to static problems and forced motion analyses. In this study, this method is extended to the finite element analysis of the natural frequencies of two dimensional problems. We also propose a modified 16-node element for three dimensional problems, which behaves much like a 20-node element with smaller degree of freedom. The modified 6-node and 16-node elements have been applied to the modal analyses of beams and plates, respectively. The results agree well with the results of the 8-node or 20-node element models.

Free vibration analysis of sandwich cylindrical panel composed of graphene nanoplatelets reinforcement core integrated with Piezoelectric Face-sheets

  • Khashayar Arshadi;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • 제50권1호
    • /
    • pp.63-75
    • /
    • 2024
  • In this paper, the modified couple stress theory (MCST) and first order shear deformation theory (FSDT) are employed to investigate the free vibration and bending analyses of a three-layered micro-shell sandwiched by piezoelectric layers subjected to an applied voltage and reinforced graphene nanoplatelets (GPLs) under external and internal pressure. The micro-shell is resting on an elastic foundation modeled as Pasternak model. The mixture's rule and Halpin-Tsai model are utilized to compute the effective mechanical properties. By applying Hamilton's principle, the motion equations and associated boundary conditions are derived. Static/ dynamic results are obtained using Navier's method. The results are validated with the previously published works. The numerical results are presented to study and discuss the influences of various parameters on the natural frequencies and deflection of the micro-shell, such as applied voltage, thickness of the piezoelectric layer to radius, length to radius ratio, volume fraction and various distribution pattern of the GPLs, thickness-to-length scale parameter, and foundation coefficients for the both external and internal pressure. The main novelty of this work is simultaneous effect of graphene nanoplatelets as reinforcement and piezoelectric layers on the bending and vibration characteristics of the sandwich micro shell.

Exact solutions of free vibration of rotating multilayered FGM cylinders

  • Wu, Chih-Ping;Li, Hao-Yuan
    • Smart Structures and Systems
    • /
    • 제9권2호
    • /
    • pp.105-125
    • /
    • 2012
  • A modified Pagano method is developed for the three-dimensional (3D) free vibration analysis of simply-supported, multilayered functionally graded material (FGM) circular hollow cylinders with a constant rotational speed with respect to the meridional direction of the cylinders. The material properties of each FGM layer constituting the cylinders are regarded as heterogeneous through the thickness coordinate, and then specified to obey a power-law distribution of the volume fractions of the constituents, and the effects of centrifugal and Coriolis accelerations, as well as the initial hoop stress due to rotation, are considered. The Pagano method, which was developed for the static and dynamic analyses of multilayered composite plates, is modified in that a displacement-based formulation is replaced by a mixed formulation, the complex-valued solutions of the system equations are transferred to the real-valued solutions, a successive approximation method is adopted to extend its application to FGM cylinders, and a propagator matrix method is developed to reduce the time needed for its implementation. These modifications make the Pagano method feasible for multilayered FGM cylinders, and the computation in the implementation is independent of the total number of the layers, thus becoming less time-consuming than usual.