• Title/Summary/Keyword: Static Structural

Search Result 2,331, Processing Time 0.031 seconds

A Study on the Slope Stability of Embankment in Consideration of Seismic Coefficient (지진계수를 고려한 제방의 사면안정에 관한 연구)

  • 강우묵;지인택;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.105-120
    • /
    • 1991
  • This study was performed to investigate the minimum safety factor of embankment in consideration of seismic coefficient by the psuedo-static analysis The variables were cohesion, the internal friction angle, angle of slope, height of seepage, height of embankment, depth of replacement The results obtained were compared with those by Fellenius method, simplified Bishop method and Janbu method. The results were summarized as follows: 1.The increasing rate of the minimum safety factor with the increasing of cohesion appeared larger in Fellenius method and Bishop method than in Janbu method. And that with the increasing of the internal friction angle appeared the lowest value in Janbu method. The minimum safety factor was influenced larger on the internal friction angle than on cohesion. 2.The variation of the minimum safety factor with the height of seepage at 0m and 5 m was nearly similar to Fellenius method, Bishop method and Janbu method. On the other hand, it was decreased suddenly at 25 m. 3.The minimum safety factor with the height of embankment was decreased remarkably under 10 m with the increasing of seismic coefficient. But, it was decreased slowly more than 10 m. As the height of embankment was low, the influence of cohesion appeared larger. 4.In heigher case of the depth of replacement, the phenomenon of reduction of the minimum safety factor appeared remarkably with seismic coefficient increased. And in lower case of the depth of replacement, the minimum safety factor was similar in Fellenius method and Bishop mehtod. But it appeared larger in Bishop method and Janbu method than in Fellenius method with the depth of replacement increased. 5.As the cohesion and the internal friction angle were large, the phenomenon of reduction of the minimum safety factor with the increasing of seismic coefficient appeared remarkably. Also, the influence of seismic coefficient in minimum safety factor appeared larger with the soil parameter increased. 6.When the seismic coefficient was considerated, investigation of the structural body on the slope stability appeared profitably in Fellenius method and Janbu method than in Bishop method.

  • PDF

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

Bending analysis of functionally graded thick plates with in-plane stiffness variation

  • Mazari, Ali;Attia, Amina;Sekkal, Mohamed;Kaci, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.409-421
    • /
    • 2018
  • In the present paper, functionally graded (FG) materials are presented to investigate the bending analysis of simply supported plates. It is assumed that the material properties of the plate vary through their length according to the power-law form. The displacement field of the present model is selected based on quasi-3D hyperbolic shear deformation theory. By splitting the deflection into bending, shear and stretching parts, the number of unknowns and equations of motion of the present formulation is reduced and hence makes them simple to use. Governing equations are derived from the principle of virtual displacements. Numerical results for deflections and stresses of powerly graded plates under simply supported boundary conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results with those available in the literature. As conclusion, this theory is as accurate as other shear deformation theories and so it becomes more attractive due to smaller number of unknowns. Some numerical results are provided to examine the effects of the material gradation, shear deformation on the static behavior of FG plates with variation of material stiffness through their length.

Vortex induced vibration and flutter instability of two parallel cable-stayed bridges

  • Junruang, Jirawat;Boonyapinyo, Virote
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.633-648
    • /
    • 2020
  • The objective of this work was to investigate the interference effects of two-parallel bridge decks on aerodynamic coefficients, vortex-induced vibration, flutter instability and flutter derivatives. The two bridges have significant difference in cross-sections, dynamic properties, and flutter speeds of each isolate bridge. The aerodynamic static tests and aeroelastic tests were performed in TU-AIT boundary layer wind tunnel in Thammasat University (Thailand) with sectional models in a 1:90 scale. Three configuration cases, including the new bridge stand-alone (case 1), the upstream new bridge and downstream existing bridge (case 2), and the downstream new bridge and the upstream existing bridge (case 3), were selected in this study. The covariance-driven stochastic subspace identification technique (SSI-COV) was applied to identify aerodynamic parameters (i.e., natural frequency, structural damping and state space matrix) of the decks. The results showed that, interference effects of two bridges decks on aerodynamic coefficients result in the slightly reduction of the drag coefficient of case 2 and 3 when compared with case 1. The two parallel configurations of the bridge result in vortex-induced vibrations (VIV) and significantly lower the flutter speed compared with the new bridge alone. The huge torsional motion from upstream new bridge (case 2) generated turbulent wakes flow and resulted in vertical aerodynamic damping H1* of existing bridge becomes zero at wind speed of 72.01 m/s. In this case, the downstream existing bridge was subjected to galloping oscillation induced by the turbulent wake of upstream new bridge. The new bridge also results in significant reduction of the flutter speed of existing bridge from the 128.29 m/s flutter speed of the isolated existing bridge to the 75.35 m/s flutter speed of downstream existing bridge.

Numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to conventional quasi-steady analysis

  • Yang, Xiongjun;Lei, Ying;Zhang, Jianguo
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.487-496
    • /
    • 2020
  • Most of the previous works on numerical analysis of galloping of transmission lines are generally based on the quasisteady theory. However, some wind tunnel tests of the rectangular section or hangers of suspension bridges have shown that the galloping phenomenon has a strong unsteady characteristic and the test results are quite different from the quasi-steady calculation results. Therefore, it is necessary to check the applicability of the quasi-static theory in galloping analysis of the ice-covered transmission line. Although some limited unsteady simulation researches have been conducted on the variation of parameters such as aerodynamic damping, aerodynamic coefficients with wind speed or wind attack angle, there is a need to investigate the numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to wind tunnel test results. In this paper, it is proposed to conduct a two dimensional (2-D) unsteady numerical analysis of ice-covered transmission line galloping. First, wind tunnel tests of a typical crescent-shapes iced conductor are conducted firstly to check the subsequent quasisteady and unsteady numerical analysis results. Then, a numerical simulation model consistent with the aeroelastic model in the wind tunnel test is established. The weak coupling methodology is used to consider the fluid-structure interaction in investigating a two-dimension numerical simulation of unsteady galloping of the iced conductor. First, the flow field is simulated to obtain the pressure and velocity distribution of the flow field. The fluid action on the iced conduct at the coupling interface is treated as an external load to the conductor. Then, the movement of the conduct is analyzed separately. The software ANSYS FLUENT is employed and redeveloped to numerically analyze the model responses based on fluid-structure interaction theory. The numerical simulation results of unsteady galloping of the iced conduct are compared with the measured responses of wind tunnel tests and the numerical results by the conventional quasi-steady theory, respectively.

The Effects of City Brand Image on City Brand Recognition and City Loyalty (도시 브랜드 이미지가 도시 브랜드 인지도와 도시 충성도에 미치는 영향)

  • Kim, Do-Heon
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.3
    • /
    • pp.69-79
    • /
    • 2018
  • Purpose - Competition among cities around the world are rapidly shifting from competition of production factors such as labor costs and quality of raw materials to competition between the consumption factors such as quality of life, settlement environment, culture, and place. The entry into the era of competition between consumption factors is not only attracting investment for strengthening city competitiveness, but also actively inducing urban image reconstruction and new image making. Therefore, various studies related to urban marketing are being carried out. The object of this study is to investigate the effect of city brand image on city brand recognition and city loyalty based on the questionnaire of external citizens about Changwon city. Research design, data, and methodology - The data were collected from 200 Seoul and Busan citizens. Reliability and exploratory factor analysis were conducted through the SPSS program, and confirmatory factor analysis and structural equation modeling were conducted by using the AMOS program. Results - As a result of the hypothesis test, six hypotheses were adopted among the nine hypotheses. In summary, pleasant image, dynamic image, and good administrative image have a significant positive impact on city brand recognition. The magnanimous image did not have a significant effect on city brand recognition. In the impact of city brand image on city loyalty, magnanimous image and good administrative image had significant positive impact on city loyalty. Pleasant images and dynamic images did not significantly affect city loyalty. In addition, city brand recognition positively influenced city loyalty. Conclusions - First, it is possible to say that there is an academic significance of this research in its contribution to regional revitalization by investigating mutual influences in urban aspect by combining place marketing with image, recognition, and loyalty. Secondly, kinetic images such as pleasant image and dynamic image have more influence on recognition, and static images such as magnanimous images have more influence on loyalty. So, further research will be necessary to establish theories. Finally, In order to increase city brand recognition and city loyalty to local city, efforts should be made to improve urban images such as pleasant image, magnanimous image, dynamic image, and good administrative image.

A Study on the relations between change of productivity and conversion factor of the Accredited Hospitals based on Malmquist index (Malmquist 지수에 기초한 의료기관평가 대상 병원의 생산성 변동과 환산지수 변동에 관한 연구)

  • O, Dong-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.125-137
    • /
    • 2011
  • This study aims to know whether the Accreditation of Hospitals can help to improve productivity of hospital and affect the conversion factor. Based on the Malmquist productivity Index, the productivity of accredited hospital improves. There exists an tendency that as the scores of Accreditation rises, productivity increases. Also the higher the productivity, the lower the conversion factors in the rigid statistical evidence. This evidence is independent of hospital classification, geographical distribution, grouping. This evidence supports the productivity index can be included in the fee negotiations. It also means that rather than static efficiency, the multi-year change of productivity information can be usefully combined to set a conversion factor in Korean National Insurance Contract especially in the discussion of the structural change of payment system.

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis

  • Kaddari, Miloud;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.37-57
    • /
    • 2020
  • This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.

Conceptual Design of Structure Subsystem for Geo-stationary Multi-purpose Satellite (정지궤도복합위성 구조계 개념설계)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Kim, Sung-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.110-115
    • /
    • 2012
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe launch environments. The launch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. Currently KARI(Korea Aerospace Research Institute) is developing Geo-KOMPSAT-2(Geostationary Earth Orbit KOrea Multi-Purpose Satellite) with technologies which were acquired during COMS(Communication, Ocean and Meteorological Satellite) development. As compared to COMS Geo-KOMPSAT-2 requires more propellant due to mass increase of Advanced Meteorological Payload with high resolution and increase of miss life, it is difficult to apply the design concept of COMS to Geo-KOMPSAT-2. This paper deals with conceptual design of Structural Subsystem for Geo-KOMPSAT-2.

Performance Test of Corner Rigid Joint for Modular Structure using Channel and Coupler (채널과 커플러를 사용한 모듈식 구조체 우각부 연결구조의 성능검증 실험)

  • Lee, Jun-Kyoung;Lee, Jong-Soon;Lee, Sung-Hyung;Kim, Hee-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2255-2262
    • /
    • 2015
  • Recent study about near-surface is proposed to overcome non-economic of underground railway and to reduce people's complaints of ground elevated railway. In this report, precast modular structure system replacing temporary facilities is applied to ensure the construction ability and economic feasibility. To verify the performance of connection joint between permanent structural wall and upper slab, loading test is carried out. As a result of the test, wall replacing temporary structure to slab connection is possible to transfer bending moment. By 30% increase of bending resistant performance for connection joint using coupler, coupler connection joint is more advantageous to resist bending moment compared to channel connection.