• Title/Summary/Keyword: Static Structural

Search Result 2,343, Processing Time 0.024 seconds

A new statistical approach for joint shear strength determination of RC beam-column connections subjected to lateral earthquake loading

  • Kim, Jaehong;LaFavet, James M.;Song, Junho
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.439-456
    • /
    • 2007
  • Reinforced concrete (RC) joint shear strength models are constructed using an experimental database in conjunction with a Bayesian parameter estimation method. The experimental database consists of RC beam-column connection test subassemblies that maintained proper confinement within the joint panel. All included test subassemblies were subjected to quasi-static cyclic lateral loading and eventually experienced joint shear failure (either in conjunction with or without yielding of beam reinforcement); subassemblies with out-of-plane members and/or eccentricity between the beam(s) and the column are not included in this study. Three types of joint shear strength models are developed. The first model considers all possible influence parameters on joint shear strength. The second model contains those parameters left after a step-wise process that systematically identifies and removes the least important parameters affecting RC joint shear strength. The third model simplifies the second model for convenient application in practical design. All three models are unbiased and show similar levels of scatter. Finally, the improved performance of the simplified model for design is identified by comparison with the current ACI 352R-02 RC joint shear strength model.

Improving cyclic behavior of multi-level pipe damper using infill or slit diaphragm inside inner pipe

  • Zahrai, Seyed Mehdi;Cheraghi, Abdullah
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.195-204
    • /
    • 2017
  • Analytical and experimental studies of the innovative pipe in pipe damper have been recently investigated by the authors. In this paper, by adding lead or zinc infill or slit diaphragm inside the inner pipe, it is tried to increase the equivalent viscous damping ratio improving the cyclic performance of the recently proposed multi-level control system. The damper consists of three main parts including the outer pipe, inner pipe and added complementary damping part. At first plastic deformations of the external pipe, then the internal pipe and particularly the added core and friction between them make the excellent multi-level damper act as an improved energy dissipation system. Several kinds of added lead or zinc infill and also different shapes of slit diaphragms are modeled inside the inner pipe and their effectiveness on hysteresis curves are investigated with nonlinear static analyses using finite element method by ABAQUS software. Results show that adding lead infill has no major effect on the damper stiffness while zinc infill and slit diaphragm increase damper stiffness sharply up to more than 10 times depending on the plate thickness and pipe diameter. Besides, metal infill increases the viscous damping ratio of dual damper ranging 6-9%. In addition, obtained hysteresis curves show that the multi-level control system as expected can reliably dissipate energy in different imposed energy levels.

A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation

  • Abazid, Mohammad Alakel;Alotebi, Muneerah S.;Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.67 no.3
    • /
    • pp.219-232
    • /
    • 2018
  • This paper deals with the static bending of various types of FGM sandwich plates resting on two-parameter elastic foundations in hygrothermal environment. The elastic foundation is modeled as Pasternak's type, which can be either isotropic or orthotropic and as a special case, it converges to Winkler's foundation if the shear layer is neglected. The present FGM sandwich plate is assumed to be made of a fully ceramic core layer sandwiched by metal/ceramic FGM coats. The governing equations are derived from principle of virtual displacements based on a shear and normal deformations plate theory. The present theory takes into account both shear and normal strains effects, thus it predicts results more accurate than the shear deformation plate theories. The results obtained by the shear and normal deformation theory are compared with those available in the literature and also with those obtained by other shear deformation theories. It is concluded that the present results are slightly deviated from other results because the normal deformation effect is taken into account. Numerical results are presented to show the effects of the different parameters, such as side-to-thickness ratio, foundation parameters, aspect ratio, temperature, moisture, power law index and core thickness on the stresses and displacements of the FG sandwich plates.

Cyclic testing of innovative two-level control system: Knee brace & vertical link in series in chevron braced steel frames

  • Rousta, Ali Mohammad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.301-310
    • /
    • 2017
  • For further development of passive control systems to dissipate larger seismic energy and prevent the structures from earthquake losses, this paper proposes an innovative two-level control system to improve behavior of chevron braced steel frames. Combining two Knee Braces, KB, and a Vertical Link Beam, VLB, in a chevron braced frame, this system can reliably sustain main shock and aftershocks in steel structures. The performance of this two-level system is examined through a finite element analysis and quasi-static cyclic loading test. The cyclic performances of VLB and KBs alone in chevron braced frames are compared with that of the presented two-level control system. The results show appropriate performance of the proposed system in terms of ductility and energy dissipation in two different excitation levels. The maximum load capacity of the presented system is about 30% and 17% higher than those of the chevron braced frames with KB and VLB alone, respectively. In addition, the maximum energy dissipation of the proposed system is about 78% and 150% higher than those of chevron braced frames with VLB and KB respectively under two separate levels of lateral forces caused by different probable seismic excitations. Finally, high performance under different earthquake levels with competitive cost and quick installation work for the control system can be found as main advantages of the presented system.

Experimental and numerical evaluation of rigid connection with reduced depth section

  • Garoosi, Allah Reza Moradi;Roudsari, Mehrzad Tahamouli;Hashemi, Behrokh Hosseini
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.863-875
    • /
    • 2020
  • After medium or strong earthquakes, damage in the reduced portion of RBS connections occurs due to plastic deformations. The purpose of this paper is to numerically and experimentally investigate the reduced depth section connection as a replaceable fuse. In this regard, three commonly used rigid connections with RBS, a replaceable fuse with RBS, and a replaceable fuse with Reduced Depth Section (RDS-F) were evaluated. All specimens were subjected to quasi-static cyclic load until failure. Although the final strength of the RDS-F is lower than that of the other two, laboratory results showed that it had the maximum ductility among the three samples. The numerical models of all three laboratory samples were constructed in ABAQUS, and the results were verified with great accuracy. The results of more than 28 numerical analyses showed that the RDS-F sample is more ductile than the other specimens. Moreover, the thickness of the web and the plastic section modulus increasing, the final strength would be equal to the other specimens. Therefore, the modified RDS-F with replaceability after an earthquake can be a better alternative for RBS connections.

Conceptual configuration and seismic performance of high-rise steel braced frame

  • Qiao, Shengfang;Han, Xiaolei;Zhou, Kemin;Li, Weichen
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.173-186
    • /
    • 2017
  • Conceptual configuration and seismic performance of high-rise steel frame-brace structure are studied. First, the topology optimization problem of minimum volume based on truss-like material model under earthquake action is presented, which is solved by full-stress method. Further, conceptual configurations of 20-storey and 40-storey steel frame-brace structure are formed. Next, the 40-storeystructure model is developed in Opensees. Two common configurations are utilized for comparison. Last, seismic performance of 40-storey structure is derived using nonlinear static analysis and nonlinear dynamic analysis. Results indicate that structural lateral stiffness and maximum roof displacement can be improved using brace. Meanwhile seismic damage can also be decreased. Moreover, frame-brace structure using topology optimization is most favorable to enhance lateral stiffness and mitigate seismic damage. Thus, topology optimization is an available way to form initial conceptual configuration in high-rise steel frame-brace structure.

Study of a new type of steel slit shear wall with introduced out-of-plane folding

  • He, Liusheng;Chen, Shang;Jiang, Huanjun
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.229-237
    • /
    • 2020
  • The steel slit shear wall (SSSW), made by cutting vertical slits in a steel plate, is increasingly used for the seismic protection of building structures. In the domain of thin plate shear walls, the out-of-plane buckling together with the potential fracture developed at slit ends at large lateral deformation may result in degraded shear strength and energy dissipation, which is not desirable in view of seismic design. To address this issue, the present study proposed a new type of SSSW made by intentionally introducing initial out-of-plane folding into the originally flat slitted plate. Quasi-static cyclic tests on three SSSWs with different amplitudes of introduced out-of-plane folding were conducted to study their shear strength, elastic stiffness, energy dissipation capacity and buckling behavior. By introducing proper amplitude of out-of-plane folding into the SSSW fracture at slit ends was eliminated, plumper hysteretic behavior was obtained and there was nearly no strength degradation. A method to estimate the shear strength and elastic stiffness of the new SSSW was also proposed.

Design Optimization of a Single-Stage Transonic Axial Compressor and Test Evaluation of Its Aerodynamic Performance (1단 천음속 축류압축기의 최적 설계 및 공력 성능 시험 평가)

  • Park, Tae Choon;Kang, Young-Seok;Hwang, Oh-Sik;Song, Ji-Han;Lim, Byeung Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.77-84
    • /
    • 2012
  • The aerodynamic performance of a single-stage transonic axial compressor was experimentally evaluated by measuring pressure and temperature distribution at the inlet and outlet of the compressor. The compressor was developed by Korea Aerospace Research Institute through multidisciplinary design optimization (MDO) method, especially integrating aerodynamic performance and structural stability. The test results show that the pressure ratio is 1.65 and the efficiency is 85.8 % at design point, where the corrected speed is 22,000 rpm and the corrected mass flow rate is 15.4 kg/s, and it has a good agreement with the design target and computational results. The distribution of pressure ratio is very steep at design speed, compared with the trend of other subsonic compressors. Also the static pressure distribution on the stator casing shows that the blade loading is gradually increasing through the stage as designed.

A Study on Pressure Characteristic in Various Inner Structure of Valves (밸브 운동부 구조 변화에 따른 압력특성에 관한 연구)

  • Hur, J.G.;Oh, I.H.;Yang, K.U.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.77-82
    • /
    • 2010
  • In general, the control valves are essential components in hydraulic systems. Structural changes within the valves remain a challenge because many parameters of valve tend to interact in terms of static and dynamic performance. Therefore, the valve characteristics is applied directly to the stability of hydraulic system. Inner structure of the valve which is used mainly in the industries is made up poppet type and spool type. This paper made a description of the method for numerical analysis and modeling of the valve with a built-in moving part of four-type. Based on the physical parameters of the valves, a numerical model of objected valve is developed using the bond graph method. It is to verified the results that the moving part of four-type has an effect on pressure and flow characteristics. Also, It is analyzed the results which has an effect on response characteristic by angular of poppet valve face and inertia variation of the valve with a built-in moving part. In the results, it is confirmed that the rising and settling time vary with the shape of moving part in valve.

Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer (형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증)

  • Lee, Myeong-Jae;Han, Je-Heon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.