• 제목/요약/키워드: Static Stiffness/Strength Design

검색결과 117건 처리시간 0.032초

고장력강을 이용한 자동차 경량 도어 개발 프로세스 (The Process Development of Automotive Light-Weighting Door using High Strength Steel)

  • 장동환
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.55-62
    • /
    • 2017
  • This paper proposes the process to develop a light-weighting automotive door assembly using high strength steel with low cost penalty. In recent years, the automotive industry is making an effort to reduce the vehicle weight. In this study, inner panels for automotive front door using thinner sheets and quenchable boron steel were designed to reduce the weight of conventional one. In order to evaluate the stiffness properties for the proposed door design, the several static tests were conducted using the finite element method. Based on the simulation results, geometry modifications of the inner panels were taken into account in terms of thickness changes and cost saving. Furthermore, a prototype based on the proposed design has been made, and then static stiffness test carried out. From the results, the proposed door is proved compatible and weight reduction of 11.8% was achieved. It could be a reference process for automotive industry to develop the similar products.

보형태 빌딩구조물의 최적 강성 분배에 관하여 (On the Optimal Distribution of Structural Stiffness in Beam-type Buildings)

  • 최동호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.314-321
    • /
    • 1998
  • This paper presents motion based design methodology for structures. Current design methodologies are primarily strength-based. Such methods are adequate when strength is expected to govern the design. But as the slenderness of structures increases, motion such as displacement and acceleration becomes the dominant criterion. In this paper, a preliminary design approach for beam-type buildings, where motion dominates the design, is discussed by effectively distributing the magnitude of structural stiffness to control the distribution of displacement under service load. This analytic development is illustrated using a cantilever beam as the structure under static loads, free vibration, and forced vibration.

  • PDF

정강성을 고려한 5축 복합가공기의 리브 구조 최적설계 (Design Optimization of the Rib Structure of a 5-Axis Multi-functional Machine Tool Considering Static Stiffness)

  • 김승기;김지훈;김세호;윤재웅
    • 한국생산제조학회지
    • /
    • 제25권5호
    • /
    • pp.313-320
    • /
    • 2016
  • The need for high-strength, multi-axis, and multi-functional machine tools has recently increased because of part complexity and workpiece strength. However, most of the machine tool manufacturers rely on experience for a detailed design because of the shortcomings in the existing design technology. This study uses a topology optimization method to more effectively design a large multi-functional machine tool considering static stiffness. The ram, saddle, and column parts are important structures in a machine tool. Hence, they are selected for the finite element method analysis. Based on this analysis, the optimized internal rib structure for those parts is designed for desirable rigidity and weight. This structure could possibly provide the required design technology for machine tool manufacturers.

경골목조주택의 벽체-바닥체 못결합부의 감쇠비에 관한 연구 (Studies on Damping Ratio of Nailed Joint Connecting Wall to Floor in Light Frame House)

  • 김광모;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권3호
    • /
    • pp.65-71
    • /
    • 1996
  • In the design of wood structures, the consideration of the dynamic load effect has been increased. Generally, damping ratio is presented as the method of considering dynamic load effect. So, the relationship between joint type and damping ratio was investigated. It has been known that the joint extremely damp the dynamic load in wood structures. Static test was performed to determine the effects of nail size and friction area on joint strength and stiffness. Joint strength and stiffness were increased with nail size. However, the static properties of joint was not affected by friction area. Cyclic test was performed to determine the effects of nail size, friction area and load magnitude on damping ratio, Damping ratio was affected by all factors. Increasing the width of the bottom plate was suggested as the most adequate method to increase the damping ratio without the reduction of the static properties of the structures.

  • PDF

Evaluating the Mechanical Properties of Fiber Yarns for Developing Synthetic Fiber Chains

  • Kim, Kyeongsoo;Kim, Taewan;Kim, Namhun;Kim, Dokyoun;Kang, Yongjun;Kim, Seonjin
    • 한국해양공학회지
    • /
    • 제35권6호
    • /
    • pp.426-433
    • /
    • 2021
  • In this study, three types of synthetic fiber materials were evaluated, namely, DM20, SK78, and T147, to replace steel chains in shipbuilding and offshore fields with fiber chains as there is increasing demand for chains with lighter weights and improved usabilities. The strength and quasi-static stiffness were analyzed to select suitable yarns for the fiber chains. The durability of the yarn was evaluated by performing a 3-T (time to rupture) test as a specific tension level. The results of the experiment revealed excellent dynamic stiffness in DM20 and highest values of the windward and leeward stiffness in T147. 3-T linear design characteristic curves for a specific tension level were derived for the three types of fiber materials. The findings of this study can provide insights for improving strength and durability in fiber chain design.

I형강 합성 중공바닥판의 휨거동 (Flexural Behavior of I-beam Composite Hollow Slabs)

  • 김대호;심창수;박창규;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.421-426
    • /
    • 2003
  • For the replacement of deteriorated concrete decks or wider-span slab, composite slab could be very attactive due to higher stiffness and strength. Based on the previous research, a modified I-beam composite hollow slab was suggested. In order to investigate the static flexural behavior of the proposed composite slab and to suggest its flexural design method, experiments were performed. Judging from the tests, a composite slab with I-beam having a semi-circle hole showed better structural performance. The effect of web details on the flexural stiffness was negligible. Flexural stiffness, ultimate strength, and ductility of the composite slabs were significantly greater than the RC slab due to composite action. While the failure of the RC slab was punching shear failure, the composite hollow slab showed flexural cracking and failure by yielding of the I-beams and crushing of concrete. Therefore, the current one-way design concept is appropriate for the design of I-beam composite hollow slab.

  • PDF

고속 프로펠러 블레이드 정적 구조 설계 및 시험 (The Static Structural Design and Test of High Speed Propeller Blade)

  • 박현범;최원
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.11-18
    • /
    • 2014
  • The recent high speed propeller with blade sweep is required to have high strength to get the thrust to fly at high speed. The high stiffness and strength carbon/epoxy composite material is used for the major structure and skin-spar-foam sandwich structural type is adopted for advantage in terms of the blade weight. As a design procedure for the present study, the structural design load is estimated through investigation on aerodynamic load and then flanges of spars from major bending loads and the skin from shear loads are sized using the netting rule and Rule of Mixture. In order to investigate the structural safety and stability, stress analysis is performed by finite element analysis code MSC. NASTRAN. It is found that current methodology of composite structure design is a valid method through the static structural test of prototype blade.

Behaviour of composite walls under monotonic and cyclic shear loading

  • Hossain, K.M. Anwar;Wright, H.D.
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.69-85
    • /
    • 2004
  • The novel form of composite walling system consists of two skins of profiled steel sheeting with an in-fill of concrete. Such walling system can be used as shear elements in steel framed building subjected to lateral load. This paper presents the results of small-scale model tests on composite wall and its components manufactured from very thin sheeting and micro-concrete tested under monotonic and cyclic shear loading conditions. The heavily instrumented small-scale tests provided information on the load-deformation response, strength, stiffness, strain condition, sheet-concrete interaction and failure modes. Analytical models for shear strength and stiffness are derived with some modification factor to take into account the effect of quasi-static cycling loading. The performance of design equations is validated through experimental results.

변위계수법 및 약산식 내진성능평가에 기초한 비보강 조적조 건물의 내진보강 요구강도 산정 (Strength Demand Calculation for Retrofitting Unreinforced Masonry Buildings Based on the Displacement Coefficient Method and the Preliminary Seismic Evaluation Procedure)

  • 설윤정;박지훈;곽병훈;김대호
    • 한국지진공학회논문집
    • /
    • 제26권1호
    • /
    • pp.31-38
    • /
    • 2022
  • Based on the nonlinear static analysis and the approximate seismic evaluation method adopted in "Guidelines for seismic performance evaluation for existing buildings, two methods to calculate strength demand for retrofitting individual structural walls in unreinforced masonry buildings are proposed." The displacement coefficient method to determine displacement demand from nonlinear static analysis results is used for the inverse calculation of overall strength demand required to reduce the displacement demand to a target value meeting the performance objective of the unreinforced masonry building to retrofit. A preliminary seismic evaluation method to screen out vulnerable buildings, of which detailed evaluation is necessary, is utilized to calculate overall strength demand without structural analysis based on the difference between the seismic demand and capacity. A system modification factor is introduced to the preliminary seismic evaluation method to reduce the strength demand considering inelastic deformation. The overall strength demand is distributed to the structural walls to retrofit based on the wall stiffness, including the remaining walls or otherwise. Four detached residential houses are modeled and analyzed using the nonlinear static and preliminary evaluation procedures to examine the proposed method.