• Title/Summary/Keyword: Static Mode

Search Result 788, Processing Time 0.024 seconds

Mechanical behavior of steel-concrete composite decks with perfobond shear connectors

  • Allahyari, Hamed;Dehestani, Mehdi;Beygi, Morteza H.A.;Neya, Bahram Navayi;Rahmani, Ebrahim
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.339-358
    • /
    • 2014
  • Exodermic deck systems are new composite steel grid deck systems which have been used in various projects during the past decade. One of the eminent features of this system is considerable reduction in the structure weight compared to the ordinary reinforced concrete decks and also reduction in construction time by using precast Exodermic decks. In this study, dynamic properties of the Exodermic deck bridges with alternative perfobond shear connectors are investigated experimentally. In order to evaluate the dynamic properties of the decks, peak picking and Nyquist circle fit methods are employed. Frequencies obtained experimentally are in good agreement with the results of the finite-element solution, and the experimental results show that the first mode is the most effective mode among the obtained modes. The first four modes are the rigid translational motion modes, and the next two modes seem to be rigid rotational motion modes around a horizontal axis. From the 7th mode onwards, modes are flexible. The range of damping ratios is about 0.5%. Furthermore, the static behavior of the Exodermic decks under a static load applied at the center of the decks was investigated. Failure of the decks under positive bending was punching-shear. The bending strength of the decks under negative bending was about 50 percent of their strength under positive bending. In addition, the weight of an Exodermic deck is about 40% of that of an equivalent reinforced concrete slab.

Construction of Static 3D Ultrasonography Image by Radiation Beam Tracking Method from 1D Array Probe (1차원 배열 탐촉자의 방사빔추적기법을 이용한 정적 3차원 초음파진단영상 구성)

  • Kim, Yong Tae;Doh, Il;Ahn, Bongyoung;Kim, Kwang-Youn
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • This paper describes the construction of a static 3D ultrasonography image by tracking the radiation beam position during the handy operation of a 1D array probe to enable point-of-care use. The theoretical model of the transformation from the translational and rotational information of the sensor mounted on the probe to the reference Cartesian coordinate system was given. The signal amplification and serial communication interface module was made using a commercially available sensor. A test phantom was also made using silicone putty in a donut shape. During the movement of the hand-held probe, B-mode movie and sensor signals were recorded. B-mode images were periodically selected from the movie, and the gray levels of the pixels for each image were converted to the gray levels of 3D voxels. 3D and 2D images of arbitrary cross-section of the B-mode type were also constructed from the voxel data, and agreed well with the shape of the test phantom.

Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method (비선형 변위모드법을 적용한 복합구조물의 내진성능평가)

  • 김부식;송호산
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • Though a nonlinear time history analysis may be provided to estimate more exactly the seismic performance of building structure, approximation methods are still needed in the aspect of practicality and simplicity, In converting a multi-story structure to an equivalent SDOF system, the mode vectors of the multi-story structure are assumed as the mode shape in elastic state regardless of elastic or elastic-plastic state. However, the characteristics of displacement mode are also changed after the yielding made in the structural elements, because the structure becomes inelastic in each incremental load step. In this research, a method of converting MDOF system to ESDOF system is presented by using nonlinear displacement mode considering the mode change of structures after the yielding. Also, the accuracy and efficiency of the method of the nonlinear displacement mode method of the estimate of seismic response of Mixed Building Structures were examined by comparing the displacements of the roof level of the multi-story building structures estimated from this converted displacement response of ESDOF with the displacement of the roof level through the nonlinear dynamic analysis of the multi-story building structures subjected to an actual earthquake excitation.

An Experimental Study on the Strength Evaluation of Mechanical Press Joint (기계적 프레스 접합부의 강도 평가에 관한 실험적 연구)

  • Park, Yeong-Geun;Jeong, Jin-Seong;Kim, Ho-Gyeong;Lee, Yong-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.438-448
    • /
    • 2000
  • Mechanical press joining technique has been used in sheet metal joining processes because of its simple process and possibility of joining dissimiliar metals, such as steel and aluminum. The static and cyclic behavior of single overlap AI-alloy and steel(SPCC) joints has been investigate. Relationships were developed to estimate the strength of the joint taking into consideration base metal strength properties and the geometry of the joint. Fatigue test results have shown that fatigue resistance of the SPCC mechanical press joints is almost equal to that of the spot weld at the life of $10^6$ cycles. Also, the dissimilar material jointed specimen with upper SPCC plate and button diameter corresponding to the nugget diameter of the spot welded specimen has almost same strength as the same material jointed specimen and as the spot welded specimen.

Fuzzy-Sliding Mode Speed Control for Two Wheels Electric Vehicle Drive

  • Nasri, Abdelfatah;Hazzab, Abdeldjabar;Bousserhane, Ismail Khalil;Hadjeri, Samir;Sicard, Pierre
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.499-509
    • /
    • 2009
  • Electric vehicles (EV) are developing fast during this decade due to drastic issues on the protection of environment and the shortage of energy sources, so new technologies allow the development of electric vehicles (EV) by means of electric motors associated with static converters. The proposed propulsion system consists of two induction motors (IM) that ensure the drive of the two back driving wheels. The electronic differential system ensures the robust control of the vehicle behavior on the road. It also allows controlling, independently, every driving wheel to turn at different speeds in any curve. This paper presents the study of an hybrid Fuzzy-sliding mode control (SMC) strategy for the electric vehicle driving wheels, stability improvement, in which the fuzzy logic system replace the discontinuous control action of the classical SMC law. Our electric vehicle fuzzy-sliding mode control's simulated in Matlab SIMULINK environment, the results obtained present the efficiency of the proposed control with no overshoot, the rising time is perfected with good disturbances rejections comparing with the classical control law.

The Prediction of the Dynamic Transmission Error for the Helical Gear System (헬리컬 기어계의 동적 전달오차의 예측)

  • Park, Chan-Il;Cho, Do-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1359-1367
    • /
    • 2004
  • The purpose of this study is to predict the dynamic transmission error of the helical gear system. To do so, the equations of motion in the helical gear system which consists of motor, coupling, gear, torque sensor, and brake are derived. As the input parameters, the mass moment of inertia by a 3D CAD software and the equivalent stiffness of the bearings and shaft are calculated and the coupling stiffness is measured. The static transmission error as an excitation is calculated by in-house program. Dynamic transmission error is predicted by solving the equations of motion. Mode shape, the dynamic mesh force and the bearing force are also calculated. In this analysis, the relationship between the dynamic mesh force and the bearing force and mode shape behavior in gear mesh are checked. As a result, the magnitude of mesh force is highly related with the gear mesh behavior in mode shape. The finite element analysis is conducted to find out the natural frequency of gear system. The natural frequencies by finite element analysis have a good agreement with the results by equation of motion. Finally, dynamic transmission error is measured by the specially designed experiment and the results by equation of motion are validated.

An Analysis on Combustion Instability in Solid Rocket Motor of 230mm Grade (230mm급 고체 추진기관의 연소불안정 거동 현상 분석)

  • Kwon, Tae-Hoon;Rho, Tae-Ho;Suh, Hyuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.177-180
    • /
    • 2009
  • A Possibility of combustion instability on longitudinal mode has a high level at large scale of L/D. Solid propellant has a metal particle and a grain of control to pressure oscillation. Solid rocket motor in slotted-tube grain controls pressure oscillation of longitudinal mode. If slot length is shot, pressure oscillation of longitudinal mode is amplified by cylinder part after middle phase of total burn time. A study has analyzed pressure oscillation of longitudinal mode at spectrum and acoustic modal analysis at pressure of result on static firing test.

  • PDF

Approximate Analysis for Shear Force Amplification Effect in Ordinary RC Shear Walls (철근콘크리트 보통전단벽의 전단력 증폭효과 근사해석)

  • Jeon, Seong-Ha;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.129-139
    • /
    • 2020
  • An approximate analysis method is proposed to predict the dynamic amplification of shear forces in ordinary reinforced concrete shear walls as a preliminary study. First, a seismic design for three groups of ordinary reinforced concrete shear walls higher than 60 m was created on the basis of nonlinear dynamic analysis. Causes for the dynamic amplification effect of shear forces were investigated through a detailed evaluation of the nonlinear dynamic analysis result. A new modal combination rule was proposed on the basis of that observation, in which fundamental mode response and combined higher mode response were summed directly. The fundamental mode response was approximated by nonlinear static analysis result, while higher mode response was computed using response spectrum analysis for equivalent linear structural models with the effective stiffness based on the nonlinear dynamic analysis result. The proposed approximate analysis generally predicted vertical distribution of story shear and shear forces of individual walls from the nonlinear dynamic analysis with comparable accuracy.

Impact Collapse Characteristics of CF/Epoxy Composite Tubes for Light-Weights

  • Kim, Young-Nam;Hwang, Jae-Jung;Baek, Kyung-Yun;Cha, Cheon-Seok;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.48-56
    • /
    • 2003
  • This paper investigates the collapse characteristics of CF/Epoxy composite tubes subjected to axial loads as changing interlaminar number and outer ply orientation angle. The tubes are aften used for automobiles, aerospace vehicles, trains, ships, and elevators. We have performed static and dynamic impact collapse tests by a way of building impact test machine with vertical air compression. It is fanad that CF/Epoxy tube of the 6 interlaminar number (C-type) with 90$^{\circ}$ outer orientation angle and trigger absorbed more energy than the other tubes (A. B and D-types). Also collapse mode depended upon outer orientation angle of CF/Epoxy tubes and loading type as well; typical collapse modes of CF/Epoxy tubes are wedged, splayed and fragmentcl.

Development of a New Inchworm Actuation System U sing Piezoelectric Shearing Actuators (전단압전가진기를 이용한 인치웜 가진시스템의 개발)

  • Lee, Sang-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.81-88
    • /
    • 2007
  • This paper presents the development of a new inchworm actuation system using the shearing deformation of the piezoelectric actuators. In this new actuation system, piezoelectric shearing/expanding actuators, an inertial mass and an advanced preload system are configured innovatively to generate the motion of an inertial mass. There are two modes in the new actuation system: (1) stick mode, and (2) clamp mode. In stick mode, the deformation of the piezoelectric shearing actuators drives an inertial mass by means of the friction force at their contact interface. On the other hand, in clamp mode, the piezoelectric expanding actuators provide the gripping force to an inertial mass and, as a result, eliminate its backward motion following the rapid backward deformation of the piezoelectric shearing actuators. To investigate the feasibility of the proposed new actuation system, the experimental system is built up, and the static performance evaluation and dynamic analysis are conducted. The open-loop performance of the linear motion of the proposed new actuation system is evaluated. In dynamic analysis, the mathematical model for the contact interface is established based on the LuGre friction model and the equivalent parameters are identified.