• Title/Summary/Keyword: Static Contact Pressure

Search Result 83, Processing Time 0.022 seconds

A Study on the Inside Contact Characteristics Between Abrasive Belt and Pulley (연삭 벨트-풀리간의 내접촉 특성에 대한 연구)

  • 김현수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.457-465
    • /
    • 1988
  • The inside contact characteristics in abrasive belt drives were investigated analytically and experimentally for (1) driver pulley contact wheel and (2) driven pulley contact wheel. The concentrated contact forces in the grinding zone divided the entire belt-pulley contact are by three distinct areas and the tangential friction forces in the active areas caused the normal forces to change, which resulted in the different belt force distribution compared with those of the ordinary flat belt drives. The experimental results for the normal pressure (belt tension) distribution were in good agreement with the theoretical results.

On the Contact Behavior Analysis of an O-ring Seal using NBR and FFKM (NBR and FFKM O-링시일의 접촉거동 해석에 관한 연구)

  • 고영배;황준태;조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.194-200
    • /
    • 2000
  • The sealing performance of an elastomeric O-ring seal using NBR and FFKM has been analyzed for the contact stress behaviors that develop between the O-ring seal and the surfaces with which it comes into contact. The leakage of an O-ring seal will occur when the pressure differential across the seal just exceeds the initial (or static) peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of restrained geometry(grooved), are investigated using the finite element method. The analysis includes material hyperelasticity and axisymmetry. The computed FEM results show that the contact stress behaviors are related to materials of NBR and FFKM and temperature of vaccum chamber.

  • PDF

A Numerical Study on the Contact Behavior Analysis of Double Layer O-rings (이중 O링의 접촉거동 해석에 관한 수치적 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2003
  • The sealing performance of an elastomeric O-ring using the double layered material has been analyzed fer the contact stress behaviors that develop between the O-ring seal and the surfaces with which it comes into contact. The leakage of an O-ring will occur when the pressure differential across the seal Just exceeds the initial (or static) peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of dovetail grooved geometry, are investigated using the finite element method. The FE analysis includes material hyperelasticity and axisymmetry. The computed FEM results show that the contact stress behaviors are related to the ratio of diameter between the inner ring and the outer ring, and the temperature of vacuum chamber.

On the Contact Behavior Analysis of an O-ring Seal including a Temperature Gradient (O-링 시일에서 온도를 고려한 접촉거동 해석에 관한 연구)

  • 고영배;조승현;이영숙;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.283-288
    • /
    • 1999
  • The sealing performance of an elastomeric O-ring seat with a temperature gradient has been analyzed for the contact stress behaviors that develop between the O-ring seal and the surfaces with which it comes into contact. The leakage of an O-ring seal will occur when the pressure differential across the seal just exceeds the initial (or static) peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of restrained geometry (grooved), are investigated using the finite element method. The analysis includes material hyperelasticity and axisymmetry. The computed FEM results show that the contact stress behaviors are related to a compression rate and a temperature gradient between the vacuum chamber with a groove and the contacting plate with a cooling jacket.

  • PDF

Analysis of an Elastomeric O-ring Seal Compressed and Highly Pressurized Under One-sided Laterally Constrained (단 측벽 구속하에서 압축 및 고압을 받는 고무 오링의 해석)

  • Park, Sung-Han;Kim, Jae-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.13-20
    • /
    • 2007
  • Elastomeric O-ring seals are widely used in static and dynamic applications. A compressed and highly pressurized O-ring seal inserted under laterally one-sided constrained condition has been analyzed experimentally and numerically. The deformed shape and extrusion length of the O-ring under high pressure has been measured by the computed tomography. Through the comparison of experimental and FE results, the numerical analysis technique has been verified. Using verified FE method, the contact stress profiles at sealing surfaces have been investigated and their relevance to the 0-ring performance evaluated based on stress-related and displacement-related parameters. It has been found that the contact stress profiles and deformation behaviors of the seal are affected by friction coefficient, gap clearance, and pressure considerably.

Comparative Analysis of Two Pedobarography Systems (두 족저압 측정장비의 비교 분석)

  • Ho Won Kang;Soomin Pyeun;Dae-Yoo Kim;Yun Jae Cho;Min Gyu Kyung;Dong Yeon Lee
    • Journal of Korean Foot and Ankle Society
    • /
    • v.28 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • Purpose: Foot pressure measurement devices are used widely in clinical settings for plantar pressure assessments. Despite the availability of various devices, studies evaluating the inter-device reliability are limited. This study compared plantar pressure measurements obtained from HR Mat (Tekscan Inc.) and EMED-n50 (Novel GmbH). Materials and Methods: The study involved 38 healthy male volunteers. The participants were categorized into two groups based on the Meary's angle in standing foot lateral radiographs: those with normal feet (angles ranging from -4° to 4°) and those with mild flatfeet (angles from -8° to -15°). The static and dynamic plantar pressures of the participants were measured using HR Mat and EMED-n50. The reliability of the contact area and mean force was assessed using the interclass correlation coefficient (ICC). Furthermore, the differences in measurements between the two devices were examined, considering the presence of mild flatfoot. Results: The ICC values for the contact area and mean force ranged from 0.703 to 0.947, indicating good-to-excellent reliability across all areas. EMED-n50 tended to record higher contact areas than HR Mat. The mean force was significantly higher in the forefoot region when measured with EMED-n50, whereas, in the hindfoot region, this difference was observed only during static measurements with HR Mat. Participants with mild flatfeet exhibited significantly higher contact areas in the midfoot region for both devices, with no consistent differences in the other parameters. Conclusion: The contact area and mean force measurements of the HR Mat and EMED-n50 showed high reliability. On the other hand, EMED-n50 tended to record higher contact areas than HR Mat. In cases of mild flatfoot, an increase in contact area within the midfoot region was observed, but no consistent impact on the differences between the two devices was evident.

On the Sealing Characteristics Analysis and Design of Bi-Polymer O-ring seals (바이폴리머 O-링 시일의 밀봉특성 해석 및 설계)

  • 고영배;김청균;이일권
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.392-400
    • /
    • 2001
  • The sealing performance of an elastomeric O-ring seal using bi-materials has been analyzed for the contact stress behaviors that develop between the O-ring seal and the surfaces with which it comes into contact. The leakage of an O-ring seal will occur when the pressure differential across the seal just exceeds the initial (or static) peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of restrained geometry(grooved), are investigated using the finite element method. The analysis includes material hyperelasticity and axisymmetry. The computed FEM results show that the contact stress behaviors are related to a ratio of length between NBR and FFKM and temperature of vaccum chamber.

  • PDF

Measurements of Vibration and Pressure of an Oxidizer Pump for a 7-tonf Turbopump with a Modified Rear Floating Ring Seal (수정된 후방 플로팅 링 실을 적용한 7톤급 터보펌프 산화제 펌프의 진동 및 압력 측정)

  • Bae, JoonHwan;Kwak, Hyun-Duck;Choi, ChangHo;Choi, JongSoo
    • Tribology and Lubricants
    • /
    • v.36 no.5
    • /
    • pp.253-261
    • /
    • 2020
  • In this paper, we present an experimental investigation of the frequency characteristics and a visual inspection of an oxidizer pump with a modified rear-floating ring seal for a 7-tonf turbopump. An oxidizer pump typically operates at high rotational speeds and under cryogenic conditions. Despite its low hydraulic efficiency, the floating ring seal is frequently employed as a leakage control solution for turbomachinery because it effectively reduces abrasion by friction. When the oxidizer pump starts up, the floating ring moves excursively but locks up stably against the pump casing when the contact pressure increases. The compressive force on the floating ring depends on the hydrodynamic forces induced by the flow through the floating ring. This force is controlled by the nose position of the floating ring. Based on a validation test for a 7-tonf turbopump with two types of floating rings, we concluded that the floating ring with a small diameter nose can move easily with a low contact pressure in the cooling path. This leads to instability of the pressure fluctuation around the floating ring. In contrast, a floating ring with a large diameter nose has a high contact pressure and attaches strongly to the casing, which causes wear and frictional oxidation between the contact surfaces of the impeller and the floating ring.

An Analysis of Characteristics of Air-Lubricated Foil Journal Bearings (공기윤활 포일 베어링의 특성해석)

  • 김종수;이준형;최상규
    • Tribology and Lubricants
    • /
    • v.17 no.2
    • /
    • pp.97-108
    • /
    • 2001
  • This paper describes the development of performance analysis technique for a leaf-type gas lubricated fail bearing. Stiffness coefficient and frictional damping due to the slip between all contacts of leaves are evaluated for various leaf structures. The fluid film thickness and pressure distribution are computed but it is not considered the elastic deformation by film pressure. The analysis results include the effects that the curvature radius and the length of leaf and the friction coefficient have on the static and dynamic characteristics of the foil bearings.

A Study on Design Sensitivity of Elastomeric O-ring Squeezed and Highly Pressurized Under Laterally One-sided Constrained Condition (단 측벽 구속하에서 압축 및 내압을 받는 고무 오링의 설계 민감도 연구)

  • Park, Sung-Han;Kim, Jae-Hoon;Kim, Won-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.27-34
    • /
    • 2007
  • Static or dynamic elastomeric O-ring seals are installed between joining parts, and play key roles of high pressure-tightening. Sealing performance and structural safety of the O-ring are dependent on groove design, plain diameter, squeeze and applications such as pressure and temperature. In this study, to solve O-ring problem squeezed and highly pressurized under laterally one-sided constrained condition, hyperelastic FE analyses are performed, and FE results are compared with measured ones by computer-aided tomography, deformed shape and extrusion depth of the O-ring. Through the comparisons, FE analysis technique was verified. In order to evaluate design sensitivity, Taguchi method was used to select FE analysis cases. Adjustment parameters are clearance gap, groove comer radius, plain diameter and squeeze. By means of verified FE analysis technique, it has been analysed how the parameters have effects on contact stress fields, internal stress fields, and extrusion depths. Sealing performance has been evaluated based on contact stress fields and contact widths, and structural safety on internal stress and strain, extrusion lengths.